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Abstract— We present and evaluate a computer vision ap-
proach for real-time mapping of traversable road surfaces
ahead of an autonomous vehicle that relies only on a stereo
camera. Our system first determines the camera position with
respect to the ground plane using stereo vision algorithms and
probabilistic methods, and then reprojects the camera raw
image to a bidimensional grid map that represents the ground
plane in world coordinates. After that, it generates a road
surface grid map from the bidimensional grid map using an
online trained pixel classifier based on mixture of Gaussians.
Finally, to build a high quality map, each road surface grid map
is integrated to a probabilistic bidimensional grid map using a
binary Bayes filter for estimating the occupancy probability of
each grid cell. We evaluated the performance of our approach
for road surface mapping in comparison to manually classified
images. Our experimental results show that our approach is
able to correctly map regions at 50 m ahead of an autonomous
vehicle, with True Positive Rate (TPR) of 90.32% for regions
between 20 and 35 m ahead and False Positive Rate (FPR) not
superior to 4.23% for any range.
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I. INTRODUCTION

The problem of autonomous passenger car navigation
has gained increased research interest, specially after the
challenges organized by the Defense Advanced Research
Projects Agency (DARPA) [1], [2], [3]. In those challenges,
the main goal of the participating teams was to develop
autonomous cars capable of navigating across the courses
specified by DARPA as a series of waypoints. But these
waypoints did not correspond precisely to the roads the
autonomous cars were expected to navigate through and
there could also be obstacles between them. Therefore,
the autonomous cars had to somehow build a map of the
traversable and non-traversable areas in front of them.

Several techniques can be used to build a map of
traversable and non-traversable areas around a car, but de-
pending on the sensors employed, the maximum range may
vary considerably [4]. In this paper, we present a computer
vision approach for real-time mapping of traversable road
surfaces ahead of an autonomous vehicle that relies only
on a stereo camera. Our system first determines the camera
position with respect to the ground plane using stereo vision
algorithms and probabilistic methods, and then reprojects
the camera raw image to a bidimensional grid map that
represents the ground plane in world coordinates. After that,
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it generates a road surface grid map from the bidimensional
grid map using an online trained pixel classifier based on
mixture of Gaussians. Finally, to build a high quality map,
each road surface grid map is integrated to a probabilistic
bidimensional grid map using a binary Bayes filter for
estimating the occupancy probability of each grid cell. We
evaluated the performance of our approach for road surface
mapping in comparison to manually classified images. Our
experimental results show that our approach is able to
correctly map regions at 50 m ahead of an autonomous
vehicle, with True Positive Rate (TPR) of 90.32% for regions
between 20 and 35 m ahead and False Positive Rate (FPR)
not superior to 4.23% for any range.

This paper is organized as follows. After this introduction,
in Section II we present our approach for road surface map-
ping. In Section III we describe our experimental methodol-
ogy and, in Section IV, we analyze our experimental results.
Our conclusions and future work follow in Section V.

II. ROAD SURFACE MAPPING

We developed a computer vision approach for real-time
road surface mapping that employs only a stereo camera.
Our system operates in three main steps: (i) camera state
estimation; (ii) image reprojection to the world coordinate
system (WCS); and (iii) road surface grid map building.

The camera state estimation is achieved using only com-
puter vision and a Kalman Filter [5]. For that, we first com-
pute disparity maps from stereo camera raw images using a
stereo matching algorithm [6], and, from the disparity maps,
we then compute v-disparity maps [7], [8] (see Fig. 3(a)).
After that we detect the road profile line in the v-disparity
maps. Finally, we employ a Kalman Filter to compute the
camera state using visual odometry [9] on the prediction step
and v-disparity derived information on the correction step.

The image reprojection to WCS is achieved by inverse
perspective mapping [10] from the WCS to the camera
coordinate system. For that, we first assume that all WCS
locations lie on the ground plane and, using the camera state
information, we map these world points to the correspondent
image points. Then, we build a bidimensional grid map
where each grid cell corresponds to a world point in the
WCS associated with a point in the raw image, and set this
grid cell with the raw image pixel value (see Fig. 3(d)). The
generated bidimensional grid map represents a bird’s eye
view [11] of the terrain in front of the car.

The road surface grid map building uses a pixel classifier
based on mixture of Gaussians. In the learning step, the
classifier is trained online using a "safe window" [12]—
a small region in front of the car where it is expected



that there is image of traversable road (see Fig. 3(c)). The
learning step maintains a mixture of Gaussians set that
models the color properties of the road in the safe windows.
In the classification step, the image regions are classified
as drivable or undrivable based on how well the image
pixels match the color properties of the learned Gaussians,
generating a road surface grid map. Finally, in order to
produce a high quality map, the road surface grid map is
integrated to a probabilistic bidimensional grid map, using a
binary Bayes filter for estimating the occupancy probability
of each grid cell.

In the following, we provide a detailed description of the
three main steps of our approach for road surface mapping.

A. Camera State Estimation

In most of driving situations, the car height and the angle
between the car and the ground plane (the pitch angle) are
not constant. This happens because frequently the ground
plane is not really a flat surface and because the number of
passengers and their weight may change from trip to trip.
The human vision system is robust enough to tolerate these
variations and allows people to build great representations
of the world, or, in the case of interest, great road surface
maps. These maps make driving possible and even an easy
task for most of human beings.

To allow an autonomous vehicle to build proper repre-
sentations of the world, an artificial vision system needs
to tolerate the variation of the camera state. Although the
camera state has many degrees of freedom, here we define
the camera state as the following two variables (see Fig. 1):

o h: the camera height with respect to the ground plane

surface;

o 0: the camera pitch angle, i.e., the angle between the

optical axis of the camera and the ground plane surface.
The other degrees of freedom are not essential for building
a map of the road with the precision we were looking for.
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Fig. 1. The camera state and the WCS. The degrees of freedom are the
height 4 and the pitch 6 with respect to the ground plane.

Since the camera state is not constant over time when
driving, we cannot just measure this state offline and use
it to build a map. To solve this problem, we have used
the Extended Kalman Filter (EKF [13]), a specific type of
Kalman Filter, in order to obtaining a robust approximation
of the camera state. A Kalman Filter operates in two steps:
prediction and correction. In the prediction step, a mecha-
nism (typically a sensor) is employed to predict the current
value of the variables of interest; in the correction step, a

different mechanism (typically another sensor) is employed
to improve the estimation of the values of the variables
computed in the prediction step.

For camera state estimation, we employed visual odome-
try [9] information on the prediction step and stereo vision
derived information on the correction step. The combination
of the two is necessary because, on the one hand, the
information provided by visual odometry is not precisely
correlated to the camera state with respect to the ground
plane, but rather with detected features. On the other hand,
the information provided by stereo vision is precisely corre-
lated to the camera state, but it is too noisy.

On the prediction step, we calculate variations in the pitch
angle and height given by the Library for VISual Odometry 2
(LIBVISO2 [9]). These variations are added to the previous
camera state, producing a predicted state.

On the correction step, we use only stereo vision derived
information. First, we compute disparity maps from the
stereo camera raw images using an OpenMP optimized
version of the Library for Efficient LArge-scale Stereo
Matching (LIBELAS [6]), that provides good results on
outdoor images and also allows real-time processing (see
Fig. 2). A stereo disparity map is an image where each
pixel value corresponds to the distance in pixels between
the image of a point in the world projected in the left and
right images of a stereo image pair [11]. Second, from the
disparity map, we compute a v-disparity map (see Fig. 3(a)).
A v-disparity map is a matrix where each line y corresponds
to a line of the disparity map, each column x corresponds to a
disparity, and each element (X, y) corresponds to the amount
of pixels of line y with disparity x [7], [8]. Third, we detect
and extract the parameters of the road profile line from the v-
disparity map. The road profile line appears in the v-disparity
map because, in typical situations, the road occupies most of
the image captured by the stereo camera and, consequently,
most of the disparity map (see Fig. 2(b)). Therefore, its
profile dominates the v-disparity map—it appears on it as
a straight sloped line with an angle greater than /2 (see
Fig. 3(b)). We detect the road profile line using the OpenCV
Computer Vision Library (OpenCV [11]) Hough Transform
algorithm, and then extract its slope, c,, and the image point
(0,vo,) where the road profile line intersects the vertical
axis—from ¢, and v, we can directly estimate 6 and h
which are used by the EKF correction step.

(b)

Fig. 2. (a) Raw image. (b) The disparity map computed by the LIBELAS
stereo matching algorithm[6].



We can directly estimate § and h from ¢, and vy, using
Equations 1 and 2 (see [7] for details):
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where (ug,vg) are the image coordinates (only vy is used
in the equations) of the projection of the optical center of
the reference camera (the right camera of the stereo pair)
in pixels; « is a derived parameter that is given by o = %
where f is the focal length of the reference camera in meters
and ¢ is the height of a pixel in meters; and b is the distance

between the cameras of the stereo pair, also in meters.

B. Image Reprojection to the WCS

Building a bidimensional grid map using range finder
sensors such as LIDAR is straightforward, if one knows the
sensor position with respect to the WCS [13]. Nevertheless,
building a bidimensional grid map using cameras is much
more complex, since extracting depth information from the
cameras raw image is not easy.

When working with cameras, one starts with a dimen-
sional problem: the WCS is three dimensional, while the
cameras’ images coordinate system is bidimensional, i.e., the
imaging process loses depth information of the real world
scene. Stereoscopic vision tackles this problem by adding the
disparity dimension to the stereo camera coordinate system.
However, stereoscopic vision loses depth resolution as the
imaged objects gets further away from the stereo camera
[14]. In fact, if the imaged object’s distance to the camera
is multiplied by n > 1, the depth accuracy is decreased by
L.

Due to the poor depth accuracy of road regions further
than 10 meters of our stereo camera (Point Grey Bumblebee
XB3 stereo camera), we have chosen to use the stereo
disparity map only to compute the v-disparity map and, from
that, to estimate the camera state. Also, we have assumed
that all imaged world points are located on the road surface
plane. Since most of the world imaged by our car’s stereo
camera is in fact the road and that we are interested in
mapping the road surface, our choices and assumptions
makes the most of what our stereo camera can offer us.

To reproject the raw image to the grid map of the road
surface plane, we used Equations 3, 4 and 5 for converting
from the camera coordinate system, where a bidimensional
point is denoted by (z,y.), to the WCS, where a three
dimensional point is denoted by (X, Y, Zu) (see [15] for
details):
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From Equations 3, 4 and 5, one can derive Equations 6
and 7 to convert from the WCS to the camera coordinate
system:
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With Equations 6 and 7, the inverse perspective mapping
of the raw image is straightforward and can be described as
follows. First, we define a bidimensional grid as the plane
at Z,, = —h, below the camera optical axis origin in the
WCS and in front of the camera. All grid cells of this
bidimensional grid have the same size in world coordinates
given by 7., X 1, m2. Then, for each grid cell, we use
Equations 6 and 7 to get the raw image pixel that corresponds
to the grid cell, and set the grid cell value as the raw
image pixel value. Fig. 3(d) shows an example of inverse
perspective mapping of the raw image shown in Fig. 3(c) to
a bidimensional grid map.

(b) (©

(d)

Fig. 3. Inverse Perspective Mapping of the raw image to a bidimensional
grid map. (a) V-disparity map computed from the disparity map of Fig. 2(b).
(b) Road profile line extracted from the v-disparity map. (c) Raw image
with the "safe window" highlighted in green. (d) Bird’s eye view of the raw
image of Fig. 3(c).

C. Road Surface Map Building

Crisman and Thorpe [16] developed a road detection
machine learning classifier, named Supervised Classification
Applied to Road Following (SCARF), that filters input
images and produces output images from which regions can
be easily classified as belonging to road surface or not.
During the training phase, their algorithm models the road
surface color properties with a set of mixture of Gaussians
and the non-road surface color properties with another set of
mixture of Gaussians. In the classification phase, it computes
the probability of each pixel belonging to road surface or not,



based on how well the color of the pixel matches the color
models.

Thrun et al. [4] used an adapted version of SCARF in
their autonomous car Stanley, winner of the 2005 DARPA
Grand Challenge [1]. They used a set of Light Detection And
Ranging (LIDARs), a Global Positioning System (GPS), a
GPS Compass, and an Inertial Measurement Unit (IMU)
fixed on top of Stanley to determine the car state, map
a world region in front of it, and determine which seg-
ments of this region belonged to traversable road surface—a
safe window. They also employed a monocular camera for
imaging a larger region of the world in front of the car
and, employing a 15 degrees of freedom position estimation
based on GPS, GPS Compass, IMU, and car odometer, and
using straightforward geometric projection, they mapped the
safe window into the camera image. In the learning step of
Stanley’s classifier, for each new camera frame received, the
pixels of the safe window are used as new samples to build
a mixture of Gaussians classifier. Each multidimensional
Gaussian is represented in the RGB color space by a mean
color, a covariance matrix and a count of the total amount
of image pixels that were used to build the Gaussian. In
the classification step, the image is classified using the
learned Gaussians in the straightforward way: the image
pixels whose value is near one or more of the learned
Gaussians are classified as drivable, and all other pixels are
classified as nondrivable [4]. But, in contrast to SCAREF,
Stanley’s classifier does not use Gaussians to model non-road
surface properties and, at each new camera frame, it may
add new Gaussian representations to substitute old Gaussians
that are no longer useful or may build new Gaussians and
merge them to existing ones to produce more representative
Gaussians. With this approach, Stanley was able to expand
the LIDARs map from about 22 meters in front of the car
to about 70 meters, allowing it to safely drive at higher
speeds [4].

We used an approach similar to that of Thrun et al. [4], but
with two important adaptations. First, our approach for road
surface mapping relies only on a stereo camera that provides
RGB frames. In contrast to the Thrun et al. [4] approach that
uses several sensors to determine safe windows, we consider
a fixed region in front of the car that is more likely to have
only road surface pixels (see Fig. 3(c)). But since obstacles
could also lie inside the fixed region, we use v-disparity
analysis to validate their pixels. With the v-disparity map and
the detected road profile line giving information about which
pixels belongs to the ground plane (i.e., which pixels are not
obstacles), we accept a pixel to compose our safe window
if it simultaneously: (i) lies inside the fixed region, and (ii)
belongs to the ground plane. Second, our online trained pixel
classifier works with the inverse perspective image (instead
of the raw one). In contrast to the Thrun et al. [4] approach
that determines safe windows and classifies the road surfaces
directly on the raw image, we determine safe windows and
classify road surfaces on the inverse perspective image (see
Fig. 3(d)). This is important because the appearance of
the pixels in the raw image varies significantly with their

distance from the camera and that does not happen in the
inverse perspective image (please, compare Fig. 3(c) and
Fig. 3(d) to appreciate that).

Since the classifier is based on color models extracted
from safe windows, its learning process can also incorporate
information from several kinds of unexpected road with
dirty or mud presence. After incorporanting such information
from a safe window, the classifier starts classifying dirty and
mud as traversable road surfaces. If, after several camera
frames, the dirty or mud patterns are not seen again inside
a safe window, the learning process will probably replace
the old Gaussians that model those patterns with newer
Gaussians that model the color properties of recently seen
safe windows.

Although our online trained pixel classifier is able to
produce a road surface grid map of the region ahead an
autonomous vehicle, in order to produce a higher quality
map, we employ a binary Bayes filter to integrate each road
surface grid map to a probabilistic bidimensional grid map
and estimate the occupancy probability of each grid cell.
The probabilistic bidimensional grid map is generated by
solving the mapping with known poses problem using the
Occupancy Grid Mapping algorithm [13]. The poses are
supplied to the Occupancy Grid Mapping algorithm by visual
odometry. Although estimating poses by fusing information
from distinct sources (car odometer, GPS, GPS Compass,
IMU) is often better, our mapping algorithm works well with
the poses provided by visual odometry, which allows our
approach to work only with a stereo camera.

Another important aspect of our mapping algorithm is
its real-time performance. We developed a Graphics Pro-
cessing Unit (GPU) implementation able to process images
of 640x480 pixels at 20 Hz. This corresponds to a higher
frequency than our stereo camera maximum rate of 16
frames per second (FPS).

III. EXPERIMENTAL METHODOLOGY

To develop and evaluate our approach for road sur-
face mapping, we have used the open-source Carnegie
Mellon Robot Navigation Toolkit - CARMEN [17] (see
http://carmen.sourceforge.net). We developed new software
modules for some specific sensor controls and stereo vision
processing, and also extended the existing software modules
for our needs. Using CARMEN modular software architec-
ture and communication patterns, the image processing is
distributed across several software modules, that run asyn-
chronously from each other, sharing just the Inter Process
Communication - IPC (see http://www.cs.cmu.edu/ ipc/) pro-
tocol and some helper libraries. Fig. 4 presents an overview
of our road surface mapping system, showing data flow
directions and dependencies between the core sensor, drivers
and software modules. In Fig. 4, sensors are represented by
yellow blocks, sensor drivers by red blocks, stereo vision
processing modules by blue blocks and our system core
software modules by green blocks.

We decided to build our own dataset using two already
available CARMEN facilities: a logger module to record a
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Fig. 4. An overview of our road surface mapping system.
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log and a player module to run the generated log offline.
The log file is available online at
http://www.lcad.inf.ufes.br/log/log_voltadaufes-20120711-
1.txt.

In the following, we describe the way our system is
assembled, the process to build our logs and the dataset
and metris used to evaluate our approach for road surface

mapping.
A. System Assembly

To record the logs, we used a common passenger ve-
hicle driven by a human (Fig. 5), with a stereo camera
positioned on the top of the vehicle. We have also used
a high performance computer with Linux Fedora Core 11
operating system, SSD Hard Disks and RAID 0 technology,
to achieve up to 500 MBytes/s of I/O data flow. During the
log recording session, the full system (computer and camera)
was powered by a single no-break.
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Fig. 5. Lateral view of the experimental vehicle. Assembled on top of
the vehicle, a stereo camera, an IMU (not used by our system) and a Laser
Range Finder (not used by our system).

The stereo camera used on our experiments was a
Point Grey Research Inc. Bumblebee XB3 BBX3-13S2C-38
Stereo Vision Sensor, capturing images of 640x480 pixels
at 16 FPS rate, with 66° HFOV. The camera was connected
to the computer by a IEEE-1394 firewire interface. The
Bumblebee BBX3-13S2C-38 Stereo Vision Sensor datasheet
is available online at Point Grey Research Inc. website
(see http://www.ptgrey.com/products/stereo.asp).

To test the system, a high performance computer with a
GTX-480 CUDA-Enabled NVidia Graphic processing unit
with 480 CUDA Cores was used to achieve fast processing
rates. Although recommended to real-time execution, there
is no need of such a high performance computer to run our
system, since we keep both GPU and non-GPU versions of
the core software modules, making the system able to run
on a computer without CUDA technology.

B. Dataset and Metrics

We selected a set of raw images from our log and the
road pixels were then manually classified as drivable. Fig. 6
shows Fig. 2(a) after manual classification. In Fig. 6, the
road regions are highlighted by black pixels.

Fig. 6. Fig. 2(a) after manual classification.

We evaluated the performance of our approach for road
surface mapping according to two standard metrics for
binary classification systems [4]:

e True Positive Rate (TPR), which can be estimated as
the ratio between the number of true positives (road
pixels that are correctly classified as drivable) and the
total number of positives (road pixels).

o False Positive Rate (FPR), which can be estimated as
the ratio between the number of false positives (non
road pixels that are incorrectly classified as drivable)
and the total number of negatives (non road pixels).

While higher TPR is important for not limiting autonomous
vehicle planning actions, lower FPR is essential to safely
avoid obstacles and non drivable regions.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results
of the performance evaluation of the image reprojec-
tion to the WCS and road surface grid map build-
ing. A video of the system running is available at
http://www.youtube.com/watch?v=-gU3rILw2GQ.

A. Image Reprojection to the WCS

We evaluate image reprojection to the WCS by comparing
the results obtained employing EKF (to estimate camera
state) with those obtained without EKF. Fig. 7(a), Fig. 7(b)
and Fig. 7(c) illustrate our results. Fig. 7(a) shows a poor
bidimensional grid map generated without employing EKF,
while Fig. 7(b) shows a better bidimensional grid map
generated by employing EKF. As Fig. 7(a) and Fig. 7(b)
show, a more reliable camera state is able to significantly
improve the bidimensional grid map.



We also evaluate image reprojection to the WCS by
comparing the results obtained employing EKF with those
obtained employing OpenCV Computer Vision Library
(OpenCV [11]) bird’s eye view method. Fig. 7(c) shows the
bidimensional grid map generated by OpenCV. As Fig. 7(b)
and Fig. 7(c) show, the bidimensional grid map produced
by our approach is more representative of the world ground
plane than the one produced by OpenCV.

(b)

Fig. 7. Bidimensional grid maps (50x40 m). (a) Bidimensional grid map
generated without employing EKF. (b) Bidimensional grid map generated
by employing EKF. (c) Bidimensional grid map generated by OpenCV.

B. Road Surface Grid Map Building

We evaluate the road surface grid map building by com-
paring the results obtained by our approach with those
obtained by a manually classified road surface map. In order
to compare both results at the same basis (i.e., bidimensional
grid maps), the set of manually classified raw images from
our log were projected to the WCS. In our evaluation, we
consider the manual classifier performance results as the
ground truth.

Fig. 8(a) shows the performance results, in terms of the
true positive and false positive metrics, of our approach
in comparison to a manual classifier. In Fig. 8(a), green
color pixels highlight true positive regions and red color
pixels highlight false positive regions. Fig. 8(b) and Fig. 8(c)
show performance results of our approach and those from
a manual classifier, respectively. As Fig. 8(a) shows, our
approach is able to identify most of the drivable road
surfaces, while not incorrectly classifying as drivable most
of the obstacles and non drivable regions.

Table I shows the TPR and FPR averaged over the set of
raw images from our log at distinct mapping ranges (ranging
from near the vehicle to 50 m ahead). Fig. 9 presents the
results of Table I in graph form. As Table I and Fig. 9 show,
our approach is able to correctly map regions at 50 m ahead

(b) ©)

Fig. 8. (a) Comparison of the performance results of our approach with
those manually classified. (b) Road surface grid map generated by our
approach. (c) The bidimensional grid map of the manually classified image
shown in Fig. 6.

of an autonomous vehicle, with TPR of 91.86% and FPR
of 0.52% for regions up to 10 m ahead; TPR of 81.01%
and FPR of 1.66% for regions between 10 and 20 m ahead;
TPR of 90.32% and FPR of 1.96% for regions between 20
and 35 m ahead; TPR of 60.89% and FPR of 4.23% for
regions between 35 and 50 m ahead. High TPRs over 81.01
for regions until 35 m ahead are important for not limiting
autonomous vehicle planning actions, while low FPRs not
superior to 4.23% for any region are essential to safely avoid
obstacles and non drivable regions.

TABLE I
TPR AND FPR AVERAGED OVER THE SET OF RAW IMAGES FROM OUR
LOG AT DISTINCT MAPPING RANGES (RANGING FROM NEAR THE
VEHICLE TO 50 M AHEAD).

Range (m) TPR | FPR
0-10 91.86 | 0.52
10-20 81.01 1.66
20-35 90.32 | 1.96
35-50 60.89 | 4.23

Although not using the same datasets, we can compare
the performance results of our approach for road surface
mapping with those of previous work by Thrun et al. [4].
Table II shows the performance results, in terms of TPR and
FPR, of the approach by Thrun et al. [4]. Our performance
results in terms of TPR for regions up to 35m ahead (lines
1-3 column 2 of Table I) are close to that of Thrun et al.
in terms of TPR (lines 2-3 columns 2-3 of Table II), and
our results in terms of FPR for regions on all ranges up to
50m ahead (lines 1-4 column 3 of Table I) are very close to
that of Thrun et al. in terms of FPR (line 6 columns 2-3 of
Table II). Fig. 10(a) and Fig. 10(b) show performance results
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Fig. 9. TPR and FPR averaged over the set of raw images from our log
at distinct mapping ranges (ranging from near the vehicle to 50 m ahead).

of our approach and those of previous work by Thrun et al.
[4], respectively. In Fig. 10(a), traversable road regions are
highlighted in white color and, in Fig. 10(b) non road regions
are highlighted in green color. As Fig. 10(a) and Fig. 10(b)
show, both approaches are able to correctly classify road
surface regions.

TABLE 11
TPR AND FPR RESULTS FROM [4] (RANGING FROM NEAR THE VEHICLE
TO 50+ M AHEAD).

Range (m) TPR - Flat desert | TPR - Mountain
0-10 - -
10-20 90.46 88.32
20-35 91.18 86.65
35-50 87.97 80.11
50+ 69.42 54.89
FPR, all ranges 3.70 2.60

(@ (b)

Fig. 10. (a) Performance results of our approach for road surface mapping.
(b) Performance results of previous work by Thrun et al. [4].

V. CONCLUSIONS AND FUTURE WORK

We presented and evaluated a computer vision approach
for real-time mapping of traversable road surfaces ahead
of an autonomous vehicle that relies only on a stereo
camera. Using stereo vision (stereo matching and v-disparity
analysis), probabilistic methods and machine learning, our
approach is able to overcome some difficulties associated
with road surface mapping, such as illumination conditions,
terrain changes and car oscillation.

We first developed a reliable technique for camera state
estimation that employs the Extended Kalman Filter, along
with visual odometry information on the prediction step and
v-disparity analysis information on the correction step. Our
experimental results show that more reliable camera states
significantly improve the bidimensional grid maps generated
by image reprojection to the WCS. Our results also show that
our approach can generate bidimensional grid maps that are
more representative of the world ground plane than those
produced by OpenCV bird’s eye view method.

We also developed a robust way to road surface map build-
ing. Our experimental results show that our approach is able
to correctly map regions at 50 m ahead of an autonomous
vehicle, with TPR of 90.32% for regions between 20 and
35 m ahead and FPR not superior to 4.23% for any range.
Although moving obstacles were often presented on the
datasets used to evaluate our work, we have not considered
them. If we tackle the problem of mapping moving obstacles,
our performance results might improve.

A direction for future work is to improve our mapping
approach to detect and represent moving obstacles, such
as pedestrians and other vehicles, on the environment. We
also intend to use the generated road surface grid map to
detect road boundaries and estimate lateral offsets of the car
with respect to road boundaries. Finally, we plan to use our
approach for real-time road surface mapping as part of a
solution for autonomous vehicle navigation.
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