
Robotics and Autonomous Systems 55 (2007) 561–571

www.elsevier.com/locate/robot

Real-time hierarchical POMDPs for autonomous robot navigation

Amalia Foka∗, Panos Trahanias

Institute of Computer Science, Foundation for Research and Technology – Hellas (FORTH), P.O. Box 1385, Heraklion, 711 10 Crete, Greece

Department of Computer Science, University of Crete, P.O. Box 1470, Heraklion, 714 09 Crete, Greece

Received 10 December 2004; received in revised form 8 January 2007; accepted 11 January 2007

Available online 15 February 2007

Abstract

This paper proposes a new hierarchical formulation of POMDPs for autonomous robot navigation that can be solved in real-time, and is

memory efficient. It will be referred to in this paper as the Robot Navigation–Hierarchical POMDP (RN-HPOMDP). The RN-HPOMDP is

utilized as a unified framework for autonomous robot navigation in dynamic environments. As such, it is used for localization, planning and local

obstacle avoidance. Hence, the RN-HPOMDP decides at each time step the actions the robot should execute, without the intervention of any other

external module for obstacle avoidance or localization. Our approach employs state space and action space hierarchy, and can effectively model

large environments at a fine resolution. Finally, the notion of the reference POMDP is introduced. The latter holds all the information regarding

motion and sensor uncertainty, which makes the proposed hierarchical structure memory efficient and enables fast learning. The RN-HPOMDP

has been experimentally validated in real dynamic environments.

c© 2007 Elsevier B.V. All rights reserved.

Keywords: Robot navigation; Partially observable Markov decision processes (POMDP); Hierarchical POMDP

1. Introduction

The autonomous robot navigation problem has been studied

thoroughly by the robotics research community over the

last years. Contemporary methods for robot navigation [10,

15,7,8] do not considerably take into account the robot

motion uncertainty, which may lead to the execution of false

actions by the robot. Probabilistic methods that integrate

uncertainty in motion planning have not been well studied

until now, in contrast to probabilistic methods for mapping and

localization. In this paper we introduce a Hierarchical POMDP

(HPOMDP) for probabilistic navigation. Our HPOMDP

formulation simultaneously addresses probabilistically all

aspects of navigation, that is motion planning, localization and

local obstacle avoidance.

Partially Observable Markov Decision Processes (POMDPs)

provide the mathematical framework for probabilistic planning.

∗ Corresponding address: Computational Vision and Robotics Laboratory,
Institute of Computer Science, Foundation for Research and Technology, P.O.
Box 1385, 711 10 Heraklion, Crete, Greece. Fax: +30 2810 391601.

E-mail addresses: foka@ics.forth.gr, foka@cs.uoi.gr (A. Foka),
trahania@ics.forth.gr (P. Trahanias).

POMDPs model the hidden state of the robot that is not

completely observable and maintain a belief distribution of the

robot’s state. Planning with POMDPs is performed according

to the belief distribution. Therefore, actions dictated by a

POMDP drive the robot to its goal but also implicitly reduce

the uncertainty of its belief.
Although POMDPs successfully meet their purpose of use,

they are intractable to solve with exact methods when applied

to real-world environments modelled at a fine resolution. Many

approximation methods for solving POMDPs are present in the

literature and have also been applied to robotics problems [1,

11,19,5,20,17,18,26,4,24]. Due to the involved computational

complexity, these approximation methods can only deal with

problems where the size of the state space is limited to at most

a few thousands states. As a result, approximation methods

cannot model large real world environments at a fine resolution

and hence POMDPs are mainly used as high level mission

planners.
In this paper, we propose a hierarchical representation of

POMDPs for autonomous robot navigation (RN-HPOMDP)

that can effectively model large real world environments at a

fine resolution. Moreover, the proposed RN-HPOMDP can be

solved in real time. It is utilized as a unified framework for

0921-8890/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.01.004

562 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571

autonomous robot navigation, implying that no other external

modules are used to drive the robot. RN-HPOMDP integrates

the modules for localization, planning and local obstacle

avoidance; it is solved online at each time step and decides the

actual actions the robot performs.

In Section 2, the necessary theoretical background for

POMDPs is given followed by the formulation of each element

of a POMDP for the autonomous robot navigation problem in

Section 3. In Section 4 the structure of the RN-HPOMDP is

presented. The methodology used for learning and planning

with the RN-HPOMDP is presented in Sections 5 and 6,

respectively.

Two other HPOMDP approaches are currently present in

the literature that are compared against the RN-HPOMDP in

Section 7.1. Experimental results are presented in Section 7 and

finally this paper’s conclusions and future work directions are

presented in Section 8.

2. Partially observable Markov decision processes

(POMDPs)

POMDPs are a model of an agent interacting synchronously

with its environment. The agent takes as input the state of the

environment and generates as output actions, which themselves

affect the state of the environment. In the POMDP framework,

a system acting in the world is not guaranteed at any time to

know the state of the world, i.e. which state of the environment

it occupies. Hence, states are partially observable.

Formally, a POMDP is a tuple M = 〈S,A, T ,R,Z,O〉,

where S, A and Z are finite sets of states, actions and

observations, respectively. T is the state transition function,

T (s, a, s′), giving the probability of ending in state s′, when

the agent starts in state s and takes action a. R is the reward

function, R(s, a), giving the expected immediate reward gained

by the agent for taking an action a when it is in state s. Finally,

O is the observation function, O(s′, a, z), giving the probability

of observing z, in state s′ after taking action a.

The belief state bt of an agent is a discrete probability

distribution over the set of environment states, S, representing

for each state the agent’s belief that is currently occupying that

state. The set of all possible belief states is B.

A POMDP agent is composed of two components [25]: the

state estimator component, that performs the belief update, and

the policy component, that solves the POMDP, as explained in

the following sections.

2.1. Belief update

The state estimator component of a POMDP updates the

belief state of the agent every time it executes an action. Given

the belief state of the agent at time t , bt , we would like to

compute the belief state at time t + 1, bt+1, after a transition in

the process where the agent occupies state s, executes an action

a and perceives an observation z. The belief that the agent is in

the resulting state s′ is derived by:

bt+1(s
′) = P(s′|z, a, bt) =

O(s′, a, z)
∑

s∈S

T (s, a, s′)bt (s)

P(z|a, bt)
.

The denominator P(z|a, bt), is a normalizing factor and is

equal to the total probability of perceiving the observation z

given the previous belief state of the agent and the action it

executed:

P(z|a, bt) =
∑

s′∈S

O(z, s′, a)T (s, a, s′)bt (s).

2.2. Solving POMDP’s

Solving a POMDP amounts to computing an optimal policy.

A policy is a mapping that specifies the action the agent

should execute for any possible state that it might occupy. In

a POMDP formulation, the true state the agent occupies is

never completely known since the agent maintains a belief over

all possible states. Therefore, the computed policy provides a

mapping of belief states to actions.

The optimal action to be executed when the agent occupies

a state st , is the one with the maximum expected accumulated

reward, E[
∑

t γ tR(st , at)], where γ is a discount factor that

determines how important are the future rewards the robot will

receive. If γ is zero, the robot will maximize the reward it will

receive for the next time step only. The expected accumulated

reward can be computed either for a specific number of steps,

the finite horizon case, or until the agent reaches the goal state,

the infinite horizon case.

The function that maps each state of the belief to the

corresponding expected accumulated reward is called a value

function. The t-step optimal value function [14] is constructed

iteratively by value iteration. In the case of Markov Decision

Processes (MDPs), where the agent’s state is fully observable,

the t-step optimal value function is formulated as:

V ∗
t (s) = max

a∈A

[

R(s, a) + γ
∑

s′∈S

T (s, a, s′)Vt−1(s
′)

]

.

However, in POMDPs where the agent’s state is partially

observable, the value function has to be defined over the whole

belief state instead of a single state as in MDPs. Hence, for

POMDPs the t-step optimal value function becomes:

V ∗
t (b) = max

a∈A

[

ρ(b, a) + γ
∑

b′∈B

τ(b, a, b′)Vt−1(b
′)

]

,

where B is the set of all possible belief states.

The transition and reward functions, τ(·) and ρ(·)

respectively, have to be defined over a belief state, b, instead of

a single state, since the true state of the agent is not completely

known. Hence, they are defined as: τ(b, a, b′) = P(b′|a, b) and

ρ(b, a) =
∑

s∈S b(s)R(s, a).

The iterative construction of the optimal value function

over the set of all possible belief states B is computationally

an extremely expensive procedure. It has been shown that

finding an exact solution of a POMDP with infinite horizon

is intractable [12]. Therefore, a number of techniques have

been proposed for approximating the value function. Many

approximation methods are based on solving the underlying

fully observable MDP [23,1,11]. More recent approximation

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 563

methods are those based on state-space compression [19], belief

compression [22] and point-based value iteration where the

POMDP is solved for a sampled set of belief points [4,20,24,

5].

3. Formulation of POMDPs for the autonomous robot

navigation problem

In the following we present a formulation of POMDPs

for autonomous robot navigation in a unified framework. The

POMDP decides the actions the robot should perform to reach

its goal and also robustly tracks the robot’s location in a

probabilistic manner. In this paper, we are interested in dynamic

environments and hence the POMDP also performs obstacle

avoidance. All three functionalities are carried out without the

intervention of any other external module.

The elements of the POMDP, 〈S,A, T ,R,Z,O〉, are

instantiated as follows:

Set of states, S: Each state in S corresponds to a discrete entry

cell in the environment’s occupancy grid map (OGM)

and an orientation angle of the robot with respect to a

global reference system.

Set of actions, A: It consists of all possible rotation actions

from 0◦ to 360◦ termed as “action angles”. The

discretization of the robot orientation angles and

action angles depends on the number of levels of the

POMDP hierarchy (see later Section 4).

Set of observations, Z: The observation set is the element of

the POMDP that assists in the localization of the

robot, that is the belief update after an action has

been taken. The set of observations is instantiated

as the output of a scan matching algorithm [3,13],

i.e. the robot displacement, (dx, dy, dθ), between two

consecutive laser scans. Hence, observations are only

robot dependent instead of environment dependent as

commonly met in the literature.

Reward function, R: Since the proposed POMDP is used as

a unified framework for robot navigation that will

provide the actual actions the robot will perform and

also carry out local obstacle avoidance for moving

objects, the reward function is updated at each time

step. The reward function is built and updated at each

time step, according to two reward grid maps (RGMs):

a static and a dynamic [2], that determine for each state

whether it is occupied by an obstacle and how far it is

from the goal position.

Transition and observation functions, T and O: They are ini-

tially defined according to the motion model of the

robot and then they are learned as explained in Sec-

tion 5.

4. The robot navigation-hierarchical POMDP

(RN-HPOMDP)

POMDP solution methods suffer from the “curse of

dimensionality” [6] and also the “curse of history” [4].

Applying both state space and action space hierarchy, as in the

RN-HPOMDP, both curses can be harnessed. In the following

we present the structure of the RN-HPOMDP.

4.1. RN-HPOMDP structure

The RN-HPOMDP is built through an automated procedure

using as input the map of the environment and the desired

discretization of the state and action space. The map of the

environment can be either a probabilistic grid map obtained at

the desired discretization or a CAD map.

4.1.1. Determining the number of levels of hierarchy of the RN-

HPOMDP

The RN-HPOMDP structure is built by decomposing a

flat POMDP with large state and action space into multiple

POMDPs with significantly smaller state and action spaces.

Therefore, in levels other than the bottom level, POMDPs are

composed of states and actions that have a coarse discretization

and do not represent the actual state the robot occupies or the

actual action the robot will perform. Hence they are termed as

abstract states and abstract actions [25].

The process of building the hierarchical structure is

performed in a top-down approach. The top-level of the RN-

HPOMDP has a discretization of angles of 90◦ and at each

subsequent level the discretization is doubled. Hence, the

number of levels of the hierarchical structure is given by the

log2 of the ratio of the top-level discretization and the desired

discretization, φ, plus one level that is the top level. Thus, the

number of levels of the RN-HPOMDP structure, L , will be

L = log2(90◦/φ) + 1.

4.1.2. Construction of the top-level of the RN-HPOMDP

The top level of the hierarchical structure is composed

of a single POMDP with very coarse resolution. Hence it

can represent the whole environment with a small number of

abstract states. The grid resolution of the top-level states is

equal to d × 2L−1, where d is the desired discretization of the

whole RN-HPOMDP structure and L is the number of levels of

the structure. The orientation angle of the robot and the action

angles are also discretized in a very coarse resolution of 90◦ and

thus represent the basic four directions [0◦, 90◦, 180◦, 270◦].

The total number of states of the top-level POMDP is

equal to |S0|/22(L−1), where |S0| is the number of states

of the corresponding flat POMDP. The number of states of

the top-level POMDP is reduced once by 2L−1 because of

the coarser grid resolution and again by 2L−1 because of the

coarser resolution of the orientation angle, as compared to the

corresponding flat POMDP.

To summarize, the top level is always composed of a single

POMDP with predefined discretization of the orientation and

action angles at 90◦. The state space size of the top-level

POMDP is variable and dependent to the discretization of

the corresponding flat POMDP and the number of levels of

the hierarchical structure. Hence, the number of levels of the

HPOMDP structure, L , should be such that it ensures that the

size of the top-level POMDP remains small.

564 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571

4.1.3. Construction of the intermediate levels of the RN-

HPOMDP

Subsequent levels of the HPOMDP are composed of

multiple POMDPs, each one representing a small area of the

environment and a specific range of orientation angles. The

actions of an intermediate level POMDP are a subset of the

actions of the corresponding flat POMDP.

In detail, each state of the top-level POMDP corresponds

to a POMDP at the immediate next level, as we go down the

hierarchical structure. A POMDP at an intermediate level l,

has states that represent grid locations of the environment at

a resolution of d × 2(L−l), where l is the current intermediate

level. Thus, by going down the hierarchical structure the grid

resolution of a level’s POMDP is twice the resolution of the

previous level.

Orientation angle decomposition

Going down the hierarchical structure, the resolution of

the orientation angle is also doubled. Since the resolution

of the orientation angle is increased as we go down the

hierarchical structure, the whole range of possible orientation

angles, [0◦, 360◦], cannot be represented in every intermediate

level POMDP. This would dramatically increase the size of the

state space and therefore we choose to have many POMDPs

that represent the same grid location but with a different

range of orientation angles. The range of orientation angles

that is represented within each intermediate level POMDP is

expressed in terms of the orientation angle, θp, of the previous

level state that is decomposed, and is equal to:

[

θp −
90◦

2l−2
, θp +

90◦

2l−2

]

,

where l is the current intermediate level. By the above expres-

sion of the range of orientation angles, every intermediate level

POMDP will always have five distinct orientation angles. For

example, if the state of the top level POMDP, l = 1, has orien-

tation angle θp = 90◦, the range of orientation angles at the next

level, l = 2, will be equal to [0◦, 180◦]. As mentioned earlier

the angle resolution of the top level is always equal to 90◦ and

the next level will have double resolution, i.e. 45◦. Therefore,

the range of orientation angles [0◦, 180◦] will be represented by

five distinct orientation angles. As shown in Fig. 1, the grid lo-

cation represented by the top level state is decomposed into four

POMDPs, where each one represents a different range of possi-

ble orientation angles. Consequently, the size of the state space

for every intermediate level POMDP is constant and equal to

20, since it always has five possible orientation angles and it

represents a 2 × 2 area of grid locations.

Action angle decomposition

Action angles are decomposed from the top level POMDP

to the next intermediate level in the same manner as with the

orientation angles. The resolution of the action angles at each

level is the same as the resolution of the orientation angles.

Hence, it is equal to 90◦/2l−1. As a result, a top level state

is also decomposed into multiple POMDPs, each one with a

different range of orientation angles but also with a different

Fig. 1. State space hierarchy decomposition. The figure depicts the

decomposition of a top level state to lower level states. The top level state

corresponds to four POMDPs at level 2, each one decomposing the location

of the top level state into four locations, and its orientation in one of the ranges

denoted by the shaded region of the circles for each POMDP. This state of

decomposition continues at lower levels until the desired discretization of the

environment has been reached.

range of action angles. The range of an action set is equal to
[

ap −
90◦

2l−2
, ap +

90◦

2l−2

]

,

where ap is the previous level action and l is the current

intermediate level. The action angles set is also always

composed by five distinct actions according to the above

expression.

4.1.4. Construction of the bottom level of the RN-HPOMDP

The procedure described in the previous section is used to

built all intermediate levels of the hierarchical structure until

the bottom level is reached. Bottom level POMDPs’ state and

action space is discretized at the desired resolution as a flat

POMDP would be discretized. The bottom level is composed

of multiple POMDPs having the same properties as all other

intermediate levels’ POMDPs, only that the grid location the

bottom level POMDPs represent is overlapping by a region r .

Overlapping regions are required to be able to solve the bottom

level POMDPs for border location states. Table 1 summarizes

the properties of the RN-HPOMDP structure.

4.2. The reference POMDP (rPOMDP)

The RN-HPOMDP described in the previous section can

cope with the computational time requirements but cannot

address the memory requirements. A flat POMDP would

require to hold a transition matrix of size (|S0|2 × |A0|) and

an observation matrix of size (|S0| × |A0| × |Z|), where |S0|

and |A0| are the size of the state space and action space,

respectively, of the flat POMDP. The size of the observation

space, |Z|, is the same for the flat POMDP and the RN-

HPOMDP since there is no observation space hierarchy.

The RN-HPOMDP structure requires to hold the transition

and observation matrices for all the POMDPs at all levels.

As can be seen in Table 1, the number of POMDPs at each

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 565

Table 1

Properties of the RN-HPOMDP structure with L levels

Top level Intermediate level l Bottom level

No of POMDPs 1 |Al−1| × |Sl−1| |AL−1| × |SL−1|

Size of S |S0|/22(L−1) 20 5 × (2 + r)2

Range of orientation angles [0◦, 360◦] [θp − 90◦

2l−1 , θp + 90◦

2l−1] [θp − 90◦

2L−1 , θp + 90◦

2L−1]

Resolution of orientation angles 90◦ 90◦/2l−1 90◦/2L−1

Size of A 4 5 5

Range of action angles [0◦, 360◦] [ap − 90◦

2l−2 , ap + 90◦

2l−2] [ap − 90◦

2L−2 , ap + 90◦

2L−2]

Resolution of action angles 90◦ 90◦/2l−1 90◦/2L−1

level is large and dependent on the size of action space

and state space. Consequently, even though each POMDP’s

observation and translation matrix is small, the total memory

requirements would be extremely large. The RN-HPOMDP has

larger memory requirements than the flat POMDP, although the

flat POMDP memory requirements are already very hard to

manage for large environments. For this reason, the notion of

the reference POMDP (rPOMDP) is introduced.

The transition and observation matrices hold probabilities

that carry information regarding the motion and sensor

uncertainty. In the formulation of the autonomous robot

navigation problem with POMDPs, as described in Section 3,

transition and observation probabilities for a given action,

a, and an observation, z, depend actually only on the

relative position and orientation of the robot, since states

and observations are robot dependent and not environment

dependent.

The transition probability of a robot from a state s to a new

state s′, when it has performed an action a, is only dependent on

the action a. Therefore when the robot is executing an action a,

the transition probability will be the same for any state s when

the resulting state s′ is defined relatively to the initial state s.

The probability that the robot observes a feature z, when it

is in a state s and performs an action a, can also be defined

in the same manner as with the transition probabilities, since

the set of features Z are not environment dependent. Therefore,

perceived features are dependent only on the motion of the

robot, i.e. the action a it performed.

The rPOMDP is built by defining a very small state space,

defined as an R × R square grid (in our implementation

R = 7) representing possible locations of the robot and all the

orientation angles of the robot that would be assigned in the

flat POMDP. The centre location of the state space represents

the invariant state sr of the robot. The action and observation

spaces are defined in the same manner they would be defined for

the corresponding flat POMDP. This rPOMDP requires to hold

transition and observation matrices of size ((R ×22+L)2 ×|A|)

and ((R × 22+L)2 × |A| × |Z|), respectively. The size of the

matrices is only dependent on the size of the set of actions and

observations and the number of levels of hierarchy, L , since

the number of levels defines the discretization of the robot’s

orientation angle. By the above, it is obvious that no matter

Fig. 2. Translation and rotation of the reference POMDP transition

probabilities matrix.

how big is the environment that is to be modelled with the RN-

HPOMDP the use of the rPOMDP allows to have reasonably

sized matrices, depending on the choice made for R, that are

easy to maintain and learn.

Given the rPOMDP, transition and observation probabilities

for each POMDP in the RN-HPOMDP hierarchical structure

are obtained by translating and rotating the reference transition

and observation probability distributions over the current

POMDP state space, as shown in Fig. 2. The transfer of

probabilities is performed on-line while a POMDP is solved

or the robot’s belief is updated.

The transition probability for any POMDP of the

hierarchical structure, T (s, s′, a), is equivalent to the transition

probability of the rPOMDP, Tr (sr , s′
r , ar). The reference result

state, s′
r , is determined by the following equation:

x ′
r

y′
r

f ′
r

 =

xr

yr

fr

+

x ′ − x

y′ − y

f ′ − f

 ,

where, the states s, s′, sr and s′
r are decomposed to the location

and orientation triplets (x, y, f), (x ′, y′, f ′), (xr , yr , fr) and

(x ′
r , y′

r , f ′
r), respectively. The reference action is determined by

ar = a + f − fr .

In the same manner, the observation probability for any

POMDP of the hierarchical structure, O(s, z, a), is equivalent

to the observation probability of the rPOMDP, Or (sr , zr , ar).

566 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571

Fig. 3. Evaluation of the learned RN-HPOMDP model.

The reference observation, z′
r , is now determined as:

dxr

dyr

d fr

 =

d cos(fr + ar)

d sin(fr + ar)

d f

 ,

where the observations z and zr are decomposed into

(dx, dy, d f) and (dxr , dyr , d fr), respectively, since observa-

tions are defined as the position and angle difference between

laser scans, and d is the distance d =
√

dx2 + dy2.

5. RN-HPOMDP learning

In our proposed HPOMDP structure, learning is performed

only for the reference POMDP, since the latter transfers

its learned parameters to the whole hierarchical structure.

Consequently, learning is performed very fast since the

rPOMDP has a very small state space. Learning the rPOMDP

parameters is performed by initializing the probability matrices

and adjusting their parameters iteratively according to an

execution trace, that is composed of action and observation

pairs, to maximize the likelihood that the execution trace was

obtained by the model. The Baum-Welch [9] algorithm is

utilized for this purpose.

5.1. Evaluation of the learned model

In order to test the validity of the learning procedure, we

have set up an experiment aiming at a quantitative evaluation

of the model that results from a learning session in specific

environments. Two learning sessions have been performed; a

learning session in a simulated environment where the ground

truth is available and also one in a real environment. The

environment chosen for both experiments is the FORTH main

entrance hall, as shown in Fig. 4.

In both experiments, execution traces have been collected

where the robot goes from a start state to a goal state. The start

and goal states were different for each execution trace. The

RN-HPOMDP for both experiments was built by discretizing

the environment into 5 cm2 cells with five levels of hierarchy,

that results to a discretization step of the orientation and

action angles of 5.625◦. The model “appropriateness” has been

evaluated using the fitness and entropy measures defined in [9]

as:

fitness = 1/T × ln p(o1...T |a1...T)

entropy = 1/(T ln |S|) ×
∑

t=1...T

∑

s∈S

[αt (s) ln(αt (s))].

Fitness and entropy are indicative measures of how well the

model explains an execution trace and how certain the robot

is about its position. The Baum-Welch algorithm is repeated

for a number of epochs until it converges. The fitness and

entropy measures are graphically shown in Fig. 3 for each

training epoch. Ideally, fitness and entropy should converge to

zero after a sufficiently large number of training epochs. As

expected, convergence to zero is not achieved, as its the case

with all learning procedures. Still, after a rather small number of

epochs, fitness and entropy converge to low values, indicating

the validity of the learned model.

In order to provide additional quantitative results on the

model accuracy, the position and orientation accuracy in

maintaining the robot’s state was measured and is shown in

Table 2. The peak of the POMDP’s belief distribution was used

as the model’s estimate of the robot’s current state. As can be

observed, the figures indicate increased accuracy of the learned

model.

In the simulated environment experiments, where the ground

truth is available, the position and orientation errors were

measured at each time step during execution between start and

goal points.

In the real environment experiments, two distinct robot

locations were manually marked on the floor of the FORTH

main entrance hall, as shown in Fig. 4. The robot was driven

manually, as accurately as possible, to one of the marked

locations and the other marked location was set as the goal

position the robot had to reach. The error in the x, y location

and orientation between the robot’s position after executing the

trace obtained by the POMDP model and the marked location it

had to reach, was measured manually as accurately as possible.

The mean position and orientation error for both experi-

ments is very close to the discretization of the POMDP, as indi-

cated by the entropy and fitness measures of the learned models.

Both experiments, validated that the learned POMDP models

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 567

Fig. 4. The marked locations in the environment where the experimental evaluation of the RN-HPOMDP model was performed.

Table 2

Position and orientation accuracy of the learned model

Mean error Real environment Simulated environment

x (m) 0.053 0.023

y (m) 0.061 0.041

f (deg) 5.525 5.041

were consistent during execution in terms of maintaining the

robot’s belief and also in reaching the goal position.

6. RN-HPOMDP planning

Solving the RN-HPOMDP to obtain the action the robot

should perform, involves solving a POMDP at each level. The

intuition of the RN-HPOMDP solution is to obtain at first a

coarse path that the robot should follow to reach a goal position,

and then refine this path at each subsequent level in the area

that the robot’s current position lies, as shown in Fig. 5. The

algorithm that implements the above is presented in Table 3 and

its details are explained in the following.

During the RN-HPOMDP planning procedure the belief

distribution of the corresponding flat POMDP is maintained

at all times. This distribution will be denoted as the full

belief. Before solving any POMDP at any level, the full

belief is compressed, by the functions compressTopBelief()

and compressBelief(), to obtain the belief distribution of

the POMDP to be solved. Belief compression is performed

according to the state abstraction present at each level of

the RN-HPOMDP structure, i.e. the discretization reduction

of each level as compared to the discretization of the

corresponding flat POMDP. Therefore, the belief assigned to

an abstract state, a state with coarse discretization at any level

of the hierarchical structure other than the bottom level, will

correspond to the average belief of all the corresponding flat

POMDP states that the named abstract state has integrated.

The belief distribution obtained for any POMDP is normalized

before solving it.

The top level POMDP is solved, by the function

solveTopLevel(), at an infinite horizon, until the goal state

is reached. The top level POMDP produces abstract actions,

i.e. actions at a coarse resolution that infer only the general

direction the robot should follow and not the actual action it

will perform. The abstract action to be executed, ap, as dictated

by the top level POMDP solution, determines which POMDP

at the immediate next level of the hierarchical structure will be

solved to obtain a new refined abstract action, that has a finer

Table 3

RN-HPOMDP planning

while not reached the goal state

compressTopBelief(top level)

ap = solveTopLevel(top level)

for l = 2 to L

whichPOMDP = selectPOMDP(l, ap)

compressBelief(l, whichPOMDP)

ap = solveLevel(l, whichPOMDP)

end

executeAction(ap)

z = getObservation()

belief L = updateBelief(whichPOMDP, ap, z)

full belief = updateFullBelief(belief L , whichPOMDP)

end

discretization but still it is not the actual action the robot will

perform.

The POMDP to be solved at the next level is determined by

the function selectPOMDP(). This function searches a level l

for the POMDP among all POMDPs in that level that satisfies

the following two criteria:

• The zero moment of the full belief distribution over the area

that is defined by the candidate POMDP states is maximum.

• The set of actions of the candidate POMDP contains an

action that has minimum distance from the previous level

solution’s action, ap.

The structure of the RN-HPOMDP, as described in

Section 4, ensures that when solving an intermediate level

POMDP the action obtained from the previous level will be

refined to a new action since the action subset range is equal

to
[

ap −
90◦

2l−2
, ap +

90◦

2l−2

]

.

Therefore the solution of an intermediate level POMDP is

bounded according to the previous level solution.

The described procedure continues until the bottom level is

reached where an abstract action will be refined to an actual

action, that is the action the robot will perform.

When the robot executes the action obtained by the bottom

level POMDP solution, an observation, z, is obtained and the

belief distribution of this bottom level POMDP is updated

by updateBelief(). Bottom level POMDPs are composed

of actual states and actions, i.e. subsets of states and actions

that compose the corresponding flat POMDP. Hence, updating

the belief of a bottom level POMDP, belief L , amounts to

updating a specific region of the full belief. Therefore, the

568 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571

Fig. 5. Planning with the RN-HPOMDP.

belief distribution of the bottom level POMDP that was

solved is transferred to the full belief by the function

updateFullBelief().

In the current implementation, all POMDPs at all levels

are solved using the voting heuristic [11]. However, this is

not an inherent feature of the RN-HPOMDP structure, as any

other POMDP solution method can be used. Furthermore, the

POMDP solution method used can also be different for each

level of the hierarchical structure.

6.1. Complexity analysis

The time complexity of solving the RN-HPOMDP is

obtained by determining the time complexity required to solve

each POMDP at each level of the hierarchical structure.

The solution of all intermediate levels and bottom level

POMDPs requires constant time, since the size of the state

space and action space is always constant and predefined

(cf. Table 1). Therefore, the total computational complexity

required to solve the RN-HPOMDP is actually the complexity

of the top level POMDP.

When approximate methods are used, such as the MLS or

voting heuristic, the complexity of solving a POMDP for a

single time step is O(|S|2|A|). Hence, the corresponding time

complexity of solving the RN-HPOMDP for a problem of the

same size is

O

(

(

|S|

22(L−1)

)2
)

.

The top-level POMDP state and action space size can remain

small regardless of the size of the whole environment by

increasing the number of levels, L , of the hierarchical structure.

When solving a flat POMDP exactly for a single step in time

t , the time complexity is O(|S|2|A||Vt−1|
|Z|), where |Vt−1| is

the number of linear components required to represent the value

function at time t −1. The size of the value function at any time

t is equal to |Vt | = |A||Vt−1|
|Z|.

In contrast, the time complexity and size of the RN-

HPOMDP when solved exactly for the same problem size is

O

(

(

|S|

22(L−1)

)2

|Vt−1|
|Z|

)

and |Vt | = |Vt−1|
|Z|, respectively.

Apart from the notable reduction in computation time due to

the reduced size of the state and action space, it should be noted

that the above mentioned times are for a single time step. The

infinite horizon solution of a flat POMDP would require these

computations to be repeated for a number N of time steps until

the goal point is reached, that is dependent on the number of

states of the flat POMDP, |S|. In the RN-HPOMDP case, only

the top level POMDP is solved at an infinite horizon, and the

number of time steps N ′ until the goal point is reached, is now

dependent on the number of states of the top level POMDP,

(|S|/22(L−1)).

From the above complexity analysis, we may conclude

that the proposed approach takes care of the “curse of

dimensionality” [6] and also the “curse of history” [4].

7. Experimental results

The RN-HPOMDP has been evaluated on its applicability

as a unified model for localization, planning and obstacle

avoidance in real world environments.

In terms of the performance of the RN-HPOMDP in

localization, the results have been already been presented

in Section 5.1, where learning of the RN-HPOMDP and its

experimental validation is presented. We have presented both

simulation and real-world experimental results and have shown

that the RN-HPOMDP is capable of keeping track of the robot’s

true position through its state estimator component.

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 569

In terms of the performance of the RN-HPOMDP in

planning we present in the following a comparison with the

other two hierarchical POMDP representations present in the

literature. In this comparison we focus on the ability of

each hierarchical representation to be applied to the problem

studied in this paper, i.e. as a unified probabilistic navigation

model. Furthermore, we provide a similar comparison with

approximation methods for solving flat POMDPs.

7.1. Comparative results

7.1.1. Comparison with other HPOMDPs

The Theocharous HPOMDP [25] has been used as a high-

level planner where the POMDP is solved once to obtain

the shortest path to the goal position. In this approach the

MLS heuristic is used and the time complexity for solving

this HPOMDP is between O(|S|
2
d N |A|) and O(|S|2|A|). In

result, in the worst case the complexity is equal to that of

solving a flat POMDP. The parameters d and N determine

the complexity reduction achieved. However, these parameters

depend on how well the HPOMDP was constructed and as a

result this approach does not provide a guaranteed reduction.

The other HPOMDP approach present in the literature,

proposed by Pineau [16], also does not have a guaranteed

reduction of the action space and state space. This HPOMDP is

built by grouping actions into abstract actions called subtasks.

Subtasks are defined manually and according to them state

abstraction is performed automatically. Therefore, this method

cannot offer any bounds on the complexity times required for

solving it.

The Theocharous HPOMDP has been used as high level

planner using topological maps and the Pineau HPOMDP for

high level robot control and dialogue management.

The state and action space reduction achieved by the above

two approaches prohibits their application to the problem

studied in this paper that is the unified probabilistic navigation

problem using POMDPs without external modules.

7.1.2. Computational time comparison

Further to the theoretical comparison presented in the

previous section, for indicative comparison purposes we

provide the CPU times required to solve the RN-HPOMDP

and also the Theocharous and Pineau HPOMDP approaches in

Tables 4–6. It should be stressed out, that the times referring to

the Pineau approach are the ones from their initial version of

HPOMDP [21] where there was only action space hierarchy.

It should be also noted that the CPU times mentioned are

the ones the authors state and have not been obtained using

computers of the same power. Another point is that the

Theocharous approach is solved using the MLS heuristic and

in our approach the POMDPs are solved using the voting

heuristic that has the same computational complexity with the

MLS heuristic. However, the Pineau HPOMDP is solved using

exact methods. Regardless of the mentioned differences, the

superior computational performance of our approach can be

easily extracted from the tabulated results since the size of the

problem is many orders of magnitude larger.

Table 4

Computation time required to solve a HPOMDP with the compared approaches

POMDP size CPU time (s)

Theocharous [25] |S| = 575 |A| = 4 2.11–5.7

|S| = 1385 |A| = 4 5.05–26.12

Pineau et al. [21] |S| = 11 |A| = 6 2.84

|S| = 20 |A| = 30 77.99

Table 5

Computation time required to solve the RN-HPOMDP with varying grid size

and five levels

Grid size POMDP size CPU time (s)

5 cm × 5 cm |S| = 18,411,520 |A| = 64 18.520

10 cm × 10 cm |S| = 4,602,880 |A| = 64 0.911

15 cm × 15 cm |S| = 2,038,080 |A| = 64 0.426

20 cm × 20 cm |S| = 1,150,720 |A| = 64 0.257

25 cm × 25 cm |S| = 734,976 |A| = 64 0.262

30 cm × 30 cm |S| = 503,808 |A| = 64 0.251

Table 6

Computation time required to solve the RN-HPOMDP with varying number of

levels and grid size of 10 cm × 10 cm

No. of levels POMDP size CPU time (s)

3 |S| = 1,150,720 |A| = 16 201.210

4 |S| = 2,301,440 |A| = 32 16.986

5 |S| = 4,602,880 |A| = 64 0.911

6 |S| = 9,205,760 |A| = 128 0.460

7 |S| = 18,411,520 |A| = 256 0.411

Fig. 6. The FORTH main entrance hall.

7.1.3. Comparison with approximation methods for solving flat

POMDPs

In [5] a review of approximation methods for solving

POMDPs is presented. Furthermore, one of the most recent

methods for approximation is the Point Based Value Iteration

(PBVI) [4] method. The time complexity of PBVI is

O(|S||A||Vt−1||Z||B|), where |B| is the size of the finite set

of belief points and |V | remains constant throughout iterations.

The time complexity of approximation methods present so far

is in the best case polynomial to the size of the POMDP.

Approximation methods have been applied to problems

where the POMDP comprised a few thousand states, that is as

high level planners. The problem we consider consists of many

orders of magnitude larger state space. As a result, the reduction

of the state space that the RN-HPOMDP offers and also the

reduction of the action space is crucial to its performance.

Furthermore, since the proposed hierarchical structure is not

restricted to a specific method for solving the underlying

POMDPs, a combination of an approximation method with the

570 A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571

Fig. 7. Two snapshots (a)–(b) of a navigation session for avoiding a human to reach the goal position. The robot track is marked with the black squares (�) and the

human track is marked with the grey dots ().

proposed hierarchical structure can dramatically improve its

performance.

7.2. Obstacle avoidance results

The RN-HPOMDP has been tested extensively in a real

world environment. The robot was set to operate for more than

70 h in the FORTH main entrance hall shown in Fig. 6 in normal

working hours where people were continuously present and

involved with the tasks the robot was set to perform. Hence,

the robot had to perform obstacle avoidance. The environment

was modelled with a RN-HPOMDP of size |S| = 18,411,520,

|A| = 256 and |Z | = 24. The RN-HPOMDP was built with

seven levels. It has to be noted that the RN-HPOMDP was able

to be solved in real-time with this problem size, in contrast

to other hierarchical POMDPs or approximation methods that

cannot accommodate large problem sizes.

In all cases the proposed navigation model has shown

a robust behavior in reaching the assigned goal points and

avoiding humans or other objects. Hence, the RN-HPOMDP

advantages of solving globally the problems of planning and

obstacle avoidance and also in a probabilistic manner can be

further exploited. Since the scope of this paper is to present

the RN-HPOMDP model structure how it can be solved in

real time, the performance of the RN-HPOMDP as an obstacle

avoider is further detailed in [2,3]. A sample path the robot

followed to reach its goal and also performed local obstacle

avoidance to avoid a human is shown in Fig. 7.

8. Conclusions and future work

In this work we introduced a new approach to hierarchical

POMDPs (HPOMDPs). The proposed approach is designed

specifically for the autonomous robot navigation problem,

hence termed as Robot Navigation-HPOMDP (RN-HPOMDP).

The RN-HPOMDP is utilized as a unified model that caters

for planning, localization and local obstacle avoidance. Hence,

it is formulated in such a manner that it does not depend on

any other external modules for localization and local obstacle

avoidance. To the best of our knowledge, it is the first time

a POMDP has been used to provide the actual actions the

robot executes and not as a high level mission planner. The

RN-HPOMDP offers significant state space and action space

reduction compared to other hierarchical approaches present

in the literature. Furthermore, the state space and action space

reduction is guaranteed and not dependent on the environment

where the robot operates. Additionally, the RN-HPOMDP can

be used in conjunction with any approximation method for

solving flat POMDPs, to further improve its performance. A

novel approach has been also proposed for storing the model

parameters with the reference POMDP (rPOMDP). The RN-

HPOMDP has been experimentally validated in a real world

environment.

Future work involves integrating into the RN-HPOMDP

prediction about the motion of humans and other obstacles

to perform efficient and effective obstacle avoidance in a

predictive manner [2,3]. Furthermore, the application of the

RN-HPOMDP to multi-robot navigation and cooperation will

be examined.

References

[1] A.R. Cassandra, L.P. Kaelbling, J.A. Kurien, Acting under uncertainty:

Discrete bayesian models for mobile-robot navigation, in: Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems,

1996.

[2] A. Foka, P. Trahanias, Predictive autonomous robot navigation, in:

Proceedings IEEE/RSJ International Conference Intelligent Robots and

Systems, IROS, 2002.

[3] A. Foka, P. Trahanias, Predictive control of robot velocity to

avoid obstacles in dynamic environments, in: Proceedings IEEE/RSJ

International Conference Intelligent Robots and Systems, IROS, 2003.

[4] G. Gordon, J. Pineau, S. Thrun, Point-based value iteration: An

anytime algorithm for pomdps, in: Proceedings of the International Joint

Conference on Artificial Intelligence, IJCAI, 2003.

[5] M. Hauskrecht, Value function approximations for partially observable

Markov decision processes, Journal of Artificial Intelligence Research 13

(2000) 33–95.

[6] L.P. Kaebling, M.L. Littman, A.R. Cassandra, Planning and acting in

partially observable stochastic domains, Artificial Intelligence 101 (1–2)

(1998) 99–134.

[7] A.A. Kassim, B.V.K. Vijaya Kumar, Path planners based on the wave

expansion neural network, Robotics and Autonomous Systems 26 (1)

(1999) 1–22.

[8] O. Khatib, S. Quinlan, D. Williams, Robot planning and control, Robotics

and Autonomous Systems 21 (3) (1997) 249–261.

[9] S. Koenig, R.G. Simmons, Unsupervised learning of probabilistic models

for robot navigation, in: Proceedings of the International Conference on

Robotics and Automation, 1996, pp. 2301–2308.

A. Foka, P. Trahanias / Robotics and Autonomous Systems 55 (2007) 561–571 571

[10] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers,

1991.

[11] M. Littman, A. Cassandra, L. Kaebling, Learning policies for partially

observable environments: Scaling up, in: Proceeding of the 12th

International Conference on Machine Learning, 1995, pp. 362–370.

[12] M.L. Littman, J. Goldsmith, M. Mundhenk, The computational

complexity of probabilistic planning, Journal of Artificial Intelligence

Research 9 (1998) 1–36.

[13] F. Lu, E. Milios, Robot pose estimation in unknown environments by

matching 2d range scans, Journal of Intelligent and Robotic Systems 18

(1998) 249–275.

[14] G.E. Monahan, A survey of partially observable markov decision

processes: Theory, models, and algorithms, Management Science 28

(1982) 1–16.

[15] U. Nehmzow, C. Owen, Robot navigation in the real world: Experiments

with Manchester’s FortyTwo in unmodified, large environments, Robotics

and Autonomous Systems 33 (4) (2000) 223–242.

[16] J. Pineau, S. Thrun, An integrated approach to hierarchy and abstraction

for POMDPs, Technical Report (CMU-RI-TR-02-21), Carnegie Mellon

University, 2002.

[17] J. Pineau, G. Gordon, S. Thrun, Applying metric-trees to belief-point

POMDPs, Neural Information Processing Systems (NIPS) (2003).

[18] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, S. Thrun, Towards

robotic assistants in nursing homes: Challenges and results, Robotics and

Autonomous Systems 42 (3–4) (2003) 271–281.

[19] P. Poupart, C. Boutilier, Value-directed compression of POMDPs, Neural

Information Systems (NIPS) (2003).

[20] K.-M. Poon, A fast heuristic algorithm for decision-theoretic planning,

Master’s Thesis, The Hong-Kong University of Science and Technology,

2001.

[21] N. Roy, J. Pineau, S. Thrun, A hierarchical approach to pomdp planning

and execution, in: Workshop on Hierarchy and Memory in Reinforcement

Learning, ICML, 2001.

[22] N. Roy, G. Gordon, Exponential family PCA for belief compression in

POMDPs, Neural Information Systems (NIPS) (2003).

[23] R. Simmons, S. Koenig, Probabilistic robot navigation in partially

observable environments, in: Proceedings of the International Joint

Conference on Artificial Intelligence, 1995, pp. 1080–1087.

[24] M.T.J. Spaan, N. Vlassis, A point-based POMDP algorithm for robot

planning, in: Proceedings of 2004 IEEE International Conference on

Robotics and Automation, ICRA, 2004.

[25] G. Theocharous, Hierarchical learning and planning in partially

observable Markov decision processes, Ph.D. Thesis, Michigan State

University, 2002.

[26] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F.

Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N Roy, J. Schulte, D.

Schulz, Probabilistic algorithms and the interactive musuem tour-guide

robot minerva, International Journal of Robotics Research 19 (11) (2000)

972–999.

Amalia Foka was born in Patras, Greece in 1976.

She received the B.Eng. degree in Computer Systems

Engineering and the M.Sc. degree in Advanced

Control from UMIST, UK in 1998 and 1999

respectively. She received the Ph.D. degree in 2005

from the Department of Computer Science, University

of Crete, Greece. She currently is a visiting lecturer

at the Department of Computer Science, University

of Ioannina, Greece. Her research interests include

robotics and artificial intelligence.

Professor Panos Trahanias received his Ph.D.

in Computer Science from the National Technical

University of Athens, Greece. Currently he is a

professor with the University of Crete, Greece and

the Foundation for Research and Technology - Hellas

(FORTH). From 1991 to 1993 he was with the

Department of Electrical and Computer Engineering,

University of Toronto, Canada, as a research associate.

He has participated in many RTD programs in image

analysis at the University of Toronto and has been a consultant to SPAR

Aerospace Ltd., Toronto. Since 1993 he has been with the University of Crete

and FORTH; currently, he is the Director of Graduate Studies, Department of

Computer Science, University of Crete, and the Head of the Computational

Vision and Robotics Laboratory at FORTH, where he is engaged in research

and RTD projects in autonomous mobile platforms, sensory technologies,

computational vision, mixed realities and human-robot interaction. Professor

Trahanias has extensive experience in the execution and co-ordination of

large research projects. Moreover, his work has been published extensively

in scientific journals and conferences. He has participated in the programme

committees of numerous international conferences; he has been the General

Chair of Computer Graphics International 2004, and will be General Co-Chair

of Eurographics 2008 and the European Conference on Computer Vision 2010.

