Universidade Federal do Espírito Santo Laboratório de Computação de Alto Desempenho - LCAD

Navegação - Conceitos gerais

Real-time hierarchical POMDPs for autonomous robot navigation

Michael André Gonçalves

Motivação

 Muitos métodos de navegação de robôs contemporâneos não levam em conta a incerteza do movimento.

- Métodos baseados em Partially Observable Markov Decision Process (POMDP) poder ser utilizados para a navegação probabilística.
- Nesse trabalho é estudado uma implementação hierárquica do POMDP aplicado à navegação robótica (Robotic Navegation Hierarchical POMDP).

Sumário

- Introdução
- Partially Observable Markov Decision Processes (POMDP).
- Formulação do POMDP em navegação robótica.
- Hierarchical POMDP aplicado à navegação robótica.
- Algoritmo.
- Resultado.

Introdução

- O POMDP pode modelar o estado oculto de um robô que não é completamente observável.
- Ele possui um alto custo computacional quando aplicados em ambientes reais o tornando intratável de ser resolvido por métodos exatos.
- Métodos de aproximação podem ser aplicados, porem são limitados a tratar apenas alguns milhares de estados.
- Portanto, o POMDP é aplicado principalmente no planejamento de navegação à alto nível.
- Nesse trabalho é estudado uma proposta de um POMDP hierárquico.

POMDP

- O POMDP recebe como entrada o estado do ambiente e gera ações como saída.
- Ele considera que a ação do sistema sobre o ambiente não é garantida.
- Consequentemente, n\u00e3o se pode garantir o estado futuro.
- Formado por dois módulos essenciais:
 - Belief Update
 - policy component

POMDP

O POMDP é formalmente representado por:

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \mathcal{Z}, \mathcal{O} \rangle$$

- S: Conjunto de estados;
- A: Conjunto das ações;
- Z: Conjunto de observações;
- T(s,a,s'): Função de transição de estado -> P(s'|s,a);
- R(s,a): Função de recompensa;
- O(s',a,z): Probabilidade sob a observação -> P(z|s',a)
- $-b_{t}$ (s): Probabilidade de se estar no estado s no tempo t.
- B: é o conjunto de b_t possíveis.

POMDP - Belief Update

Belief Update

$$b_{t+1}(s') = P(s'|z, a, b_t)$$

$$= \frac{P(z|s', a, b_t)P(s'|a, b_t)}{P(z|a, b_t)}$$

$$= \frac{P(z|s', a, b_t) \sum_{s \in S} P(s'|a, b_t, s)P(s|a, b_t)}{P(z|a, b_t)}$$

$$= \frac{P(z|s', a) \sum_{s \in S} P(s'|s, a)P(s|b_t)}{P(z|a, b_t)}$$

$$= \frac{O(s', a, z) \sum_{s \in S} T(s, a, s')b_t(s)}{P(z|a, b_t)}$$

POMDP - Belief Update

Belief Update

$$b_{t+1}(s') = P(s'|z, a, b_t)$$

$$= \frac{P(z|s', a, b_t)P(s'|a, b_t)}{P(z|a, b_t)}$$

$$= \frac{P(z|s', a, b_t) \sum_{s \in S} P(s'|a, b_t, s)P(s|a, b_t)}{P(z|a, b_t)}$$

$$= \frac{P(z|s', a) \sum_{s \in S} P(s'|s, a)P(s|b_t)}{P(z|a, b_t)}$$

$$= \frac{\mathcal{O}(s', a, z) \sum_{s \in S} \mathcal{T}(s, a, s')b_t(s)}{P(z|a, b_t)}$$

O denominador P(z|a,bt), é um fator de normalização e é equivalente à probabilidade total da percepção da observação z.

$$P(z|a, b_t) = \sum_{s' \in S} P(z|s', a) P(s'|s, a) b_t(s)$$
$$= \sum_{s' \in S} \mathcal{O}(z, s', a) \mathcal{T}(s, a, s') b_t(s)$$

POMDP - policy component

policy component

$$V_t^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') V_{t-1}(s') \right]$$

POMDP - policy component

policy component

$$V_t^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') V_{t-1}(s') \right]$$
$$V_t^*(b) = \max_{a \in \mathcal{A}} \left[\rho(b, a) + \gamma \sum_{b' \in \mathcal{B}} \tau(b, a, b') V_{t-1}(b') \right]$$

POMDP - policy component

policy component

$$V_t^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') V_{t-1}(s') \right]$$

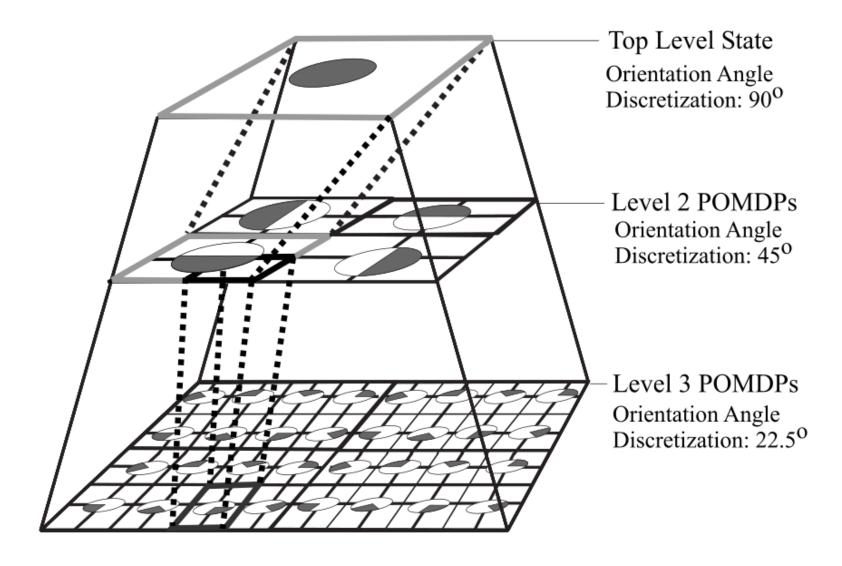
$$V_t^*(b) \triangleq \max_{a \in \mathcal{A}} \left[\rho(b, a) + \gamma \sum_{b' \in \mathcal{B}} \tau(b, a, b') V_{t-1}(b') \right]$$

$$\rho(b, a) = \sum_{s \in \mathcal{S}} b(s) R(s, a) \qquad \tau(b, a, b') = P(b'|a, b)$$

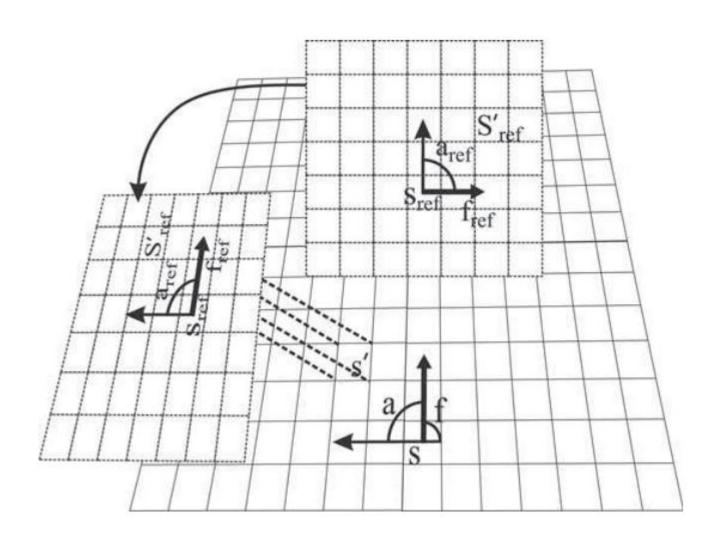
Formulação do POMDP em navegação robótica

- S: Localização a partir de um grid map e um ângulo de orientação.
- A: Ângulo de rotação;
- Z: Sensores Auxiliares para a localização;
- R: Recompensa atribuida por uma ação sobre uma posição do grid map;

- Divisão do POMDP de forma hierárquica
 - A instância do nível do topo trabalha com ações/estados em ângulos de 90° com [0°, 360°] de atuação.
 - Cada nível descido dobra a discretização, por exemplo: o nível seguinte do topo trabalha com 45°.



	Top level	Intermediate level l	Bottom level
No of POMDPs	1	$ \mathcal{A}^{l-1} \times \mathcal{S}^{l-1} $	$ \mathcal{A}^{L-1} \times \mathcal{S}^{L-1} $
Size of ${\mathcal S}$	$ \mathcal{S}^0 /2^{2(L-1)}$	20	$5 \times (2+r)^2$
Range of orientation angles	$[0^{\circ}, 360^{\circ}]$	$[\theta_p - \frac{90^{\circ}}{2^{l-1}}, \theta_p + \frac{90^{\circ}}{2^{l-1}}]$	$[\theta_p - \frac{90^{\circ}}{2^{L-1}}, \theta_p + \frac{90^{\circ}}{2^{L-1}}]$
Resolution of orientation angles	90°	$90^{\circ}/2^{l-1}$	$90^{\circ}/2^{L-1}$
Size of ${\mathcal A}$	4	5	5
Range of action angles	$[0^{\circ}, 360^{\circ}]$	$[a_p - \frac{90^{\circ}}{2^{l-2}}, a_p + \frac{90^{\circ}}{2^{l-2}}]$	$[a_p - \frac{90^{\circ}}{2^{L-2}}, a_p + \frac{90^{\circ}}{2^{L-2}}]$
Resolution of action angles	90°	$90^{\circ}/2^{l-1}$	$90^{\circ}/2^{L-1}$

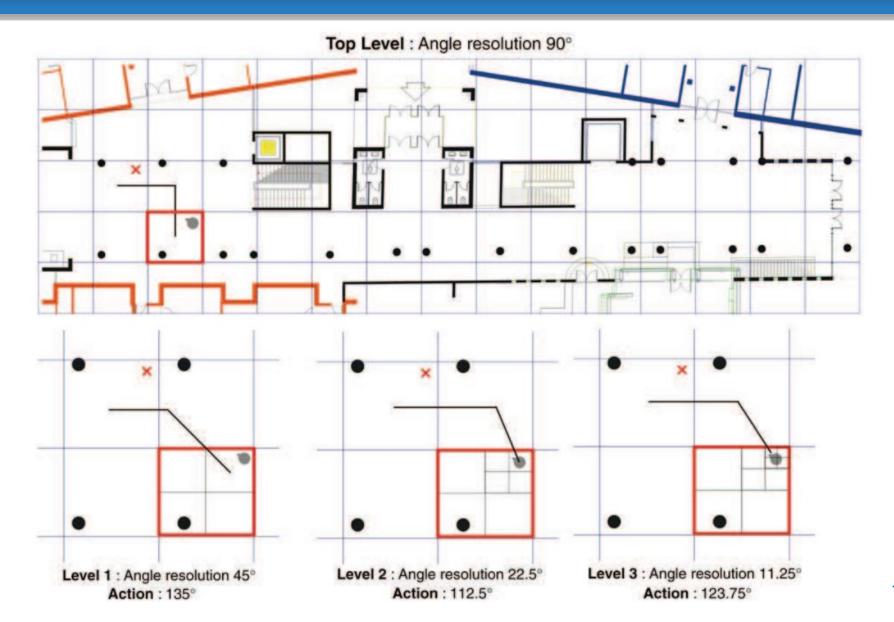


Algoritmo

RN-HPOMDP planning

```
while not reached the goal state
      compressTopBelief(top level)
     a_p = solveTopLevel(top level)
     for l=2 to L
        whichPOMDP = selectPOMDP(l, a_p)
        compressBelief(l, whichPOMDP)
        a_p = solveLevel(l, whichPOMDP)
     end
      executeAction(a_p)
     z = getObservation()
     belief_L = updateBelief(whichPOMDP, a_p, z)
     full\ belief = updateFullBelief(belief_L, whichPOMDP)
end
```

Exemplo



Resultado

Computation time required to solve the RN-HPOMDP with varying grid size and five levels

Grid size	POMDP size		CPU time (s)
5 cm × 5 cm	S = 18,411,520	A = 64	18.520
$10 \text{ cm} \times 10 \text{ cm}$	S = 4,602,880	A = 64	0.911
$15 \text{ cm} \times 15 \text{ cm}$	S = 2,038,080	A = 64	0.426
$20 \text{ cm} \times 20 \text{ cm}$	S = 1,150,720	A = 64	0.257
$25 \text{ cm} \times 25 \text{ cm}$	S = 734,976	A = 64	0.262
$30 \text{ cm} \times 30 \text{ cm}$	S = 503,808	A = 64	0.251

Computation time required to solve the RN-HPOMDP with varying number of levels and grid size of $10~\text{cm} \times 10~\text{cm}$

No. of levels	POMDP size		CPU time (s)
3	S = 1,150,720	A = 16	201.210
4	S = 2,301,440	A = 32	16.986
5	S = 4,602,880	A = 64	0.911
6	S = 9,205,760	A = 128	0.460
7	S = 18,411,520	A = 256	0.411

Resultado

Computation time required to solve a HPOMDP with the compared approaches

	POMDP size		CPU time (s)
Theocharous [25]	S = 575 S = 1385	A = 4 $ A = 4$	2.11–5.7 5.05–26.12
Pineau et al. [21]	S = 11 $ S = 20$	A = 6 $ A = 30$	2.84 77.99