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Abstract – We derive the Bhattacharyya distance between 

two Dirichlet densities. As an application we use image 

segmentation by a Split-and-Merge algorithm. 

 

 

1. INTRODUCTION 
 

Pratt [1] emphasizes the importance of image features 
for the segmentation of contiguous regions. In the context 
of region characterization by texture features, Faugeras and 
Pratt [2] measure the difference between regions by a 
probabilistic distance measure [3], the Bhattacharyya 
distance [4], [5], [6]. They point out that the measure 
should be applicable to other image features. In this work 
we investigate the use of the Bhattacharyya distance 
between luminance based image features, typically three 
channel color information like RGB or HSV. As an 
underlying feature model we use a Dirichlet density of the 
intensity normalized color values. Compared to a Gaussian 
distribution it has advantages if the density is asymmetric 
and has a compact support. For instance if the expected 
value of some feature is close to the maximum and 
minimum value, together with a high variance, the 
Gaussian bell shaped density allows implausible values 
below zero or above the maximum permitted value. 

Bouguila [7] have proposed mixture Dirichlet densities 
in feature-space based human skin segmentation. In an 
image- domain region growing segmentation approach the 
use of mixture models is limited due to the following facts: 
small regions usually do not have a multimodal density; 
the estimation of mixture parameters is difficult and does 
not guarantee success; the estimation of simple (i.e. non-
mixture) Dirichlet parameters is relatively fast and 
straightforward and therefor appropriate for a Split-and-
Merge segmentation process; most important is the fact the 
homogeneity of a region is by nature antagonistic to a 
mixed, heterogeneous probability density model. 

The paper is organized in the following manner: 
Section 2 introduces homogeneity criteria in segmentation 
algorithms which guide the region grouping. Section 3 
explains the Dirichlet distribution. The analytical definition 
in the case of a Dirichlet density of the Bhattacharyya 
probabilistic distance is given in section 4. Experimental 
results are shown in section 5 and finally the conclusions 
are drawn in section 6. 

 

 

2. HOMOGENEITY CRITERIA IN IMAGE-

DOMAIN BASED REGION SEGMENTATION 
 

Lucchese and Mitra survey segmentation methods for 
color images [8]. We limit our considerations to what they 
call image-domain based segmentation which considers 
spatial relationships among image points. There exist 
basically two approaches: split-and-merge and region 
growing. They have in common that a homogeneity 
predicate must be defined which is true within the 
definition of a region and false for distinct regions. The 
most elementary criterion is a difference of the mean gray-
level of an existing region and a candidate that falls below 
a certain threshold. If it is satisfied that candidate is 
incorporated into the existing region. The Dirichlet 
probability distribution has been used in a variety of 
supervised and unsupervised pattern recognition do- mains, 
for instance in the context of bioinformatics for protein 
sequence analysis [9], feature domain image segmentation 
[7] or text analysis [10]. In this work we will explore the 
Dirichlet model in an image-domain region segmentation 
algorithm. 

 

 

3. DIRICHLET PROBABILITY DENSITY 
 

3.1 Definition 
 

The Dirichlet probability density function (pdf) of a 
multi-variate random variable x with parameters α is 
defined as 

���; �� � �
	��� ∏ ��

�������   (1) 

with  constraints �� � 0 and ∑ ��� � 1. The 

normalizing constant ���� which forces ���; �� as a pdf 

to integrate to unity over the domain of x is the 

multinomial beta function with value ���� � 

∏ Γ�������� /Γ�∑ ������ ). The density ���; �� has a 

compact support over a sub-domain of �� which is a 
�� � 1�-simplex and possesses a great variety of shapes, 

U-shaped, bell-shaped, exponentially-shaped, depending 

on the values of the parameters ��. As a representative 

model we will use throughout the paper the � � 3 intensity 

normalized RGB values of a pixel as features, hence 

� � �    !  �"# � $ ! $ ��⁄  (2) 



which satisfies the sum-to-unity constraint of its 

component features ��, �&, �'. Other feature models with 

this constraint are equally usable. The 2-simplex in this 

case is the triangle in the intensity normalized RGB space, 

spanned among the points (1, 0, 0), (0, 1, 0), (0, 0, 1). Any 

color triple RGB in projected onto the simplex by the 

normalization process, in a similar way as a XYZ color 

onto xy-space in the CIE chromaticity diagram [1]. 
 

3.2 Parameter estimation 
 

We want to know the d values ��, given as the only 

information n samples �( ) �� which form the data set 

* � +��, … , �./. Minka [11] derives for the  maximization 

of the Log-likelihood function 0�*|�� an iterative fixed-

point estimation which will be used here. 

In a segmentation algorithm, when we melt two regions 

23, 24, characterized by parameters �5, �6, the 

parameters �576 of the union of the two regions have to be 

re-estimated. In order to avoid the calculus of �576 ) �� 

from scratch, an efficient, incremental estimation for 

updating the Dirichlet parameters is proposed. Suppose 

that from the n pixels of region  23 the parameters 

�5 � +�58, … , �59/ have  been estimated. For the merged 

region 2576, we first update the mean of  the  logarithm of  

the kth component of the sample value which is needed in 

Minka’s algorithm. If a single pixel of region 24 is added 

as the (n+1)th pixel of 2576 we have the update rule (3), 

based on the Robbins-Monroe algorithm [12], [13] 
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Since we have only to update a mean value of a union of 

two sets, given two mean values of the sets, a direct update 

of mean log values of the union :;< ��
 
is also possible: 
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4. BHATTACHARYYA PROBABILISTIC 

DISTANCE MEASURE 
 

We have assumed that a region of an image is 

characterized by features ��, … , ��  which are assembled 

into the multivariate feature vector � � � ��  … ��"#. The 

most simple case is when the region is only described by 

the gray value f of its pixels at position �J, K�. In this case 

we have � � 1 and � � � � �� � L�J, K�. 
 

4.1 Analytical definition 
 

The values of the feature vectors of two regions 2M and 

2N form conditional probability density functions 

pM�x|2M� and pN�x|2N�, where the subscripts in p 

emphasize the fact the we deal with two different 

functional forms. The Bhattacharyya coefficient Q ) �0,1" 
between two probability distributions described by the 

functional forms �3, �4  and their respective parameters R3, 

R4 is defined [4], [5] as 

Q�R3, R4� � S T�3��|23; R3��4��|24; R4� ��. (5) 

For reasons of clarity the functional forms of the pdfs �3 
and �4  have be omitted in the argument list. Note however 
that the Bhattacharyya coefficient is defined between 
densities that do not necessarily have to come from the 
same functional family. 

From Q the Bhattacharyya distance (or B-distance for 
short) can be defined as 

� �  � ln Q,         � ) �0, ∞". (6) 
An alternative which obeys the triangle inequality [9] is  

�X �  T1 � Q,      �X ) �0,1". (7) 
 

4.2 Bhattacharyya distance between Dirichlet densities 
 

If we apply eq. (5) to two Dirichlet distributed densities, 
we obtain for the Bhattacharyya coefficient 

Q��5, �6� � �
T	��5�	��6� S ∏ ��

Y@�Z =YA�Z ������ ��. (8) 
Let [�: � @�

& $ A�
& , ] � 1, … , �. Then [�  satisfies the 

constraint [� � 0 and ���; ^� is a Dirichlet distribution 

with parameters ^. Hence S ���; ^� � 1 or equivalently 

from the definition of eq. (1) we find that S ∏ ��
_������� �

��^�. Plugging this into eq. (8) we define the 

Bhattacharyya coefficient for the probabilistic distance 

between two Dirichlet densities as 
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T���5����6� � 

∏ c`Y@�Z =YA�Z bd�ef
c�f

Z ∑ �@�=A���d�ef
 Tc�|�5|�c�|�6|�
g∏ c�@��d�ef g∏ c�A��d�ef

 �9� 

The definition of the Bhattacharyya distance � in the 

case of Dirichlet distributions is motivated by the fact the 

Gamma function Γ(.) produces numerical overflows if its 

argument comes near the value 171.61. Especially if the 

variance of the provided samples is small this threshold is 

easily reached. Therefor the logarithmic form of eq. (6) for 

� is preferred because it permits high values for the �� 

parameters. The Bhattacharyya distance between two 

Dirichlet densities is then 

���5, �6� � �:> Q��5, �6� =  

 �  �:> Γ�∑ @�=A�
&

����  � $ �
& +∑ :> Γ��3������ $

∑ :> Γ��4������ / � ∑ :> Γ�@�=A�
& ������ �

�
& +:> Γ�|�5|� $ :> Γ�|�6|� (10) 

Since the Dirichlet distribution is a generalization of the 
Beta distribution, the Bhattacharyya coefficients and 
distances for this specializations is easily derived from (9) 
and (10). 

 

 

5. EXPERIMENTAL RESULTS 
 

It should be emphasized that the principal result of this 
work is the theoretical analysis of the Bhattacharyya 
probabilistic distances of the Dirichlet distribution. The 
following experiments do not claim to propose methods 



that are superior to others in the application area 
mentioned. They illustrate the process of statistical 
modeling with the Dirichlet distribution, parameter 
estimation and probabilistic distance measuring. We divide 
the evaluation of the proposed methods into the theoretical 
parameter estimation and an a image segmentation 
application. First we present the behaviour of the learning 
of the parameters for artificially generated Dirichlet 
distributed data samples. Then the learning is observed in 
the unsupervised case when the true distribution of the data 
assumes a Dirichlet distribution and the true parameters are 
not accessible. Finally a Split-And-Merge image 
segmentation is performed. 

 

5.1 Parameter estimation for synthetic Dirichlet 

distribution 
 

A Dirichlet distributed data sample � with � parameters 

�� can be generated by independently generating d 

variables �� that are Gamma distributed with density 

function ����  ; ��, 1�  � ��
���i�E�/Γ����. Then � j�

� ��  … ��"#/ ∑ ������  is Dirichlet distributed with 

parameters �. 

Table 1 shows the result of parameter estimation 

experiments with different number of samples. The 

number of iterations means that from that iteration on 

subsequent alphas are identical up to double length floating 

point precision. The true parameters are randomly chosen 

from a uniform distribution of the interval [0.1, 1.1]. Then 

the samples are generated with the true parameters. The 

initial estimated parameters are obtained by the method of 

moments [11]. For a higher number of samples there seems 

to be higher stability in the values as in the case of 10.000 

samples. Besides, the initial estimated values ��k� are 

notably near the true values. The experiment suggests that 

the parameter learning is achieved after a few iteration 

steps and that the curves enter their saturation very 

quickly. 
 

 

 True 

parameters 

Initial 

estimated 

parameters 

Final 

estimated 

parameters 

10000 sampl. �� � 0.2522 �n� � 0.2541 �n� � 0.2536 

42 iterations �& � 0.1084 �n& � 0.1090 �n& � 0.1072 

 �' � 0.1066 �n' � 0.1106 �n' � 0.1083 

1000 samples �� � 0.9645  �n� � 0.9729  �n� � 0.9464 

92 iterations �& � 1.0173 �n& � 1.0345 �n& � 1.0090 

 �' �  0.2440 �n' � 0.2609 �n' � 0.2518 

100 samples �� �  0.5697 �n� �  0.5787 �n� � 0.5828 

74 iterations �& � 0.4876 �n& � 0.4930 �n& � 0.5318 

 �' � 0.8536 �n' � 0.9575 �n' � 0.8733 

 

Table 1. Estimated parameters �r of Dirichlet Distribution with 

� � 3 for different number of samples 

 

 

5.2 Parameter estimation for selected image regions 
 

We selected rectangular regions with different size of an 
image like they are typically used in the Split-and-Merge 
algorithm. For the determination of the Dirichlet 
parameters the only observable learning criterion is the 
log-likelihood 0�*|�� since we are dealing with an 
unsupervised case. Fig. 1 shows four selected ROIs of the 
intensity normalized Lenna-image: Region 1 is 
representative for a highly textured area, region 3 has 
approximately two different subregions (eyes and skin) and 
regions 2 and 4 are homogeneous with a low variance and 
covariance of the intensities. 

 

 
 

Fig. 1. Original and intensity normalized Lenna-image with 

selected regions of interest. 

 

 

The results of the parameter learning are shown in 
table 2. An obvious difference can be observed between 
the homogeneous regions {2,4} and the textured regions 
{1,3} relativ to the achieved likelihood, the dimension of 
the alphas and the number of iterations to reach a 
saturation. The homogeneous regions are very slowly 
converging to very high values of the Dirichlet parameters 
and have a very small likelihood. The textured regions 
converge fast to moderate alphas and present high values 
for the likelihood. A theoretical interpretation of these 
results is outside the scope of this paper and needed a more 
profound analysis of the Dirichlet probability distribution 
and the its parameter learning. The learning suggests 
however that homogeneous regions with small variation of 
the intensity values are more difficult to model by a 
Dirichlet probability distribution. 

 

 

 

ROI Iterations Bounding Box Initial estimated 

parameters 

Log-

Likelihood 

Final estimated 

parameters 

Log-

Likelihood 

  �s(. �s3E ts(. ts3E �n� �n& �n' 0� uv|��k�� �n� �n& �n' 0� uv|��k�� 

1 2344 70 400 150 450 46.34 16.64 38.52 13280.6 36.51 12.79 30.55 13438.3 

2 3000 270 400 330 500 84.7 47.98 43.8 -126491.7 157.9 89.6 81.98 -5188923.2 

3 1469 246 243 353 287 27.73 13.04 15.67 13879.2 27.49 12.65 15.81 13906.7 

4 15000 120 2 162 45 869.42 404.1 394. -18037157.7 1213. 564.2 550.3 -27094869. 



 

Table 2. details for the learning of the dirichlet parameters for the selected ROIs of fig. 1. The number of iterations for regions 1 and 3 

mean that from that iteration on subsequent alphas are identical up to double length floating point precision. in the case of regions 2 and 

4 the number of iterations was chosen such that the log-likelihood reached a visible saturation. 

 

 

5.3 Split-and-Merge Segmentation 
 

We use the Bhattacharyya distance between Dirichlet 

parameters of neighboring regions to control the splitting 

of the quadtree representation and the melting of 

neighboring regions in the merging phase. Fig. 2 shows a 

segmentation experiment with two images. We use a 256 

pixel wide square image and limit the smallest region to 16 

pixel to avoid a statistically irrelevant parameter 

estimation. For the initial training of the Dirichlet 

parameters, the similarity between ���w=�� and ���w� is set 

to x � 0.001 and the maximum number of iterations to 

ys3E � 1000. When two regions are melted the iterative 

fixed-point estimation [11] is applied 10000 times. The 

training parameters to determine the Dirichlet parameters 

of the regions are identical as in the previous experiments. 

 

 
 

 
 

Fig. 2. Segmentation experiments for two 256 × 256 images. 

Each group shows the original image, the intensity normalized 

version and the segmentation result. 

 

 

4. CONCLUSION AND FUTURE WORK 
 

As a main result of this paper we present the formulation 
of the Bhattacharyya probabilistic distance between two 
Dirichlet distributions. An efficient update method for 
sequential parameter estimation when merging two data 
populations is also shown. As an application area we chose 
Split-And-Merge image segmentation. Other areas of 
application are possible as long as the data is modeled by a 
Dirichlet distribution. Mixture Dirichlet [4] modeling is a 
further possible field of work. 

 

ACKNOWLEDGMENTS 
 

During the elaboration of the methods described in this 
paper Thomas W. Rauber was on sabbatical leave under 
grant 3168-04-2 from CAPES, the Brazilian government 
agency for the qualification of academic staff and the 
Casadinho research project sponsored by CNPq for 
financial support. 

 

 

REFERENCES 
 

 [1]  W. K. Pratt. Digital Image Processing: PIKS Inside. John 

Wiley and Sons, New York, 3rd edition, 2001. 

 [2]  O. D. Faugeras and W. K. Pratt.  Decorrelation methods of 

texture feature extraction. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 2(4):323–332, 1980. 

 [3]  P. A. Devijver and J. Kittler. Pattern Recognition: A 

Statistical Approach. Prentice/ Hall Int., London, 1982. 

 [4]  A. Bhattacharyya. On a measure of divergence between 

two statistical populations defined by their probability 

distributions.  Bull. Calcutta Math. Soc., 49:214–224, 

1943. 

 [5]  T. Kailath. The Divergence and the Bhattacharyya distance 

measures in signal selection. IEEE Transactions on 

Communication Technology, C-15(1):52–60, 1967. 

 [6]  K. Fukunaga. Introduction to Statistical Pattern 

Recognition. Academic Press, San Diego, 2nd edition, 

1990. 

 [7]  N. Bouguila, D. Ziou, and J. Vaillancourt.  Unsupervised 

learning of a finite mixture model based on the dirichlet 

distribution and its application.  IEEE Transactions on 

Image Processing, 13(11):1533– 1543, 2004. 

 [8]  L. Lucchese and S. Mitra. Color image segmentation: A 

state-of-the- art survey.  Proc. of the Indian National 

Science Academy (INSA-A), 67(2):207–221, 2001. 

 [9]  K. Sjölander, K. Karplus, M. Brown, R. Hughey, A. Krogh, 

I. Saira Mian, and D. Haussler. Dirichlet mixtures: A 

method for improving de- tection of weak but signicant 

protein sequence homology. citeseer. 

ist.psu.edu/sj96dirichlet.html, 1996. 

[10] M. Yamamoto and K. Sadamitsu. Dirichlet mixtures in text 

modeling. Technical Report CS-TR-05-1, University of 

Tsukuba, May 2005. 

[11]  T. P. Minka. Estimating a dirichlet distribution. research. 

microsoft.com/˜minka/papers/dirichlet, 2003. 

[12]  C. M. Bishop.  Neural Networks for Pattern Recognition.  

Oxford University Press, USA, 1996. 

[13]  H. Robbins and S. Monroe. A stochastic approximation 

method. Annals of Mathematical statistics, 22:400–407, 

1951. 


