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claudinebadue@dcc.ufmg.br, felthomaz@gmail.com, albertodesouza@gmail.com

Abstract. In automated multi-label text classification, each text docu-
ment is associated with a set of classes and an automatic classification
system should output a class set, whose size is unknown a priori, for
each document under classification. Many machine learning techniques
have been used for building such automatic text classification systems.
Virtual generalizing random access memory weightless neural networks
(Vg-ram wnn) is an effective machine learning technique which offers
simple implementation, and fast training and test. In this work, we have
trained Vg-ram wnn with a multi-label Web database and evaluated
its classification performance using multi-label classification metrics. We
compared our results with that of the boosting-style algorithm Boos-

texter, the multi-label kernel method Rank-svm, the multi-label de-
cision tree Adtboost.MH, and the multi-label lazy learning approach
Ml-knn. Our experimental comparative analysis showed that, on aver-
age, Vg-ram wnn either outperforms the other mentioned techniques or
show similar classification performance.

1 Introduction

Automatic text classification is still a very challenging computational problem to
the information retrieval communities both in academic and industrial contexts.
Most works on text classification in the literature are focused in single-label text
classification [1]. However, in real-world problems, multi-label classification is
frequently necessary [2–11].

From a theoretical point of view, single-label classification is more general
than multi-label, since an algorithm for single-label classification can also be
used for multi-label classification: one needs only to transform the multi-label
classification problem into n independent single-label problems, where n is num-
ber of possible classes (labels) [1]. However, this equivalence between single-label
and multi-label classification only holds if the n classes are stochastically inde-
pendent, that is, the association of a class ck to a document is independent of the
association of another class, cl, to the same document, but this frequently is not
the case. Multi-label classification systems can take advantage of the correlation
between classes in order to improve their performance.

Several approaches specially designed for multi-label classification have been
proposed, such as multi-label decision trees [4, 6], multi-label kernel methods [5,



8, 9], and multi-label text classification [2, 3, 7, 12]. In this work, we present an
experimental evaluation of the performance of virtual generalizing random ac-
cess memory weightless neural networks (Vg-ram wnn [13]) on multi-label text
classification. Vg-ram wnn is an effective machine learning technique which
offers simple implementation, and fast training and test [14]. We have trained
Vg-ram wnn with a multi-label Web database (Web pages categorized by “ya-
hoo.com”) and evaluated its classification performance using the hamming loss,
one-error, coverage, ranking loss, and average precision multi-label classification
metrics [3]. We compared the Vg-ram wnn classification performance, accord-
ing to these metrics, with that of the boosting-style algorithm Boostexter [3],
the multi-label kernel method Rank-svm [5], the multi-label decision tree Adt-

boost.MH [6], and the multi-label lazy learning techniques Ml-knn [11]. Our
results showed that, on average, Vg-ram wnn either outperforms these tech-
niques or show similar classification performance.

This paper is organized as follows. Section 2 introduces the multi-label text
classification problem and the metrics used to evaluate the performance of the
multi-label classifiers examined. Section 3 briefly introduces Vg-ram wnn and
describes how we have used it for multi-label text classification. Section 4 presents
our experimental methodology and analyzes our experimental results. Our con-
clusions and directions for future work follow in Section 5.

2 Multi-Label Text Classification

Text classification may be defined as the task of assigning documents to a pre-
defined set of classes [1]. Let D be the domain of documents, C = {c1, . . . , c|C|}
a set of pre-defined classes, and Ω = {d1, . . . , d|Ω|} an initial corpus of docu-
ments previously classified under the set of classes C. In multi-label learning,
the training(-and-validation) set TV = {d1, . . . , d|TV |} is composed of a number
documents, each associated with a set of classes. TV is used to train a classifier
that associates the characteristics of each document in the TV to the appropri-
ate combination of classes. The test set Te = {d|TV |+1, . . . , d|Ω|}, on the other
hand, consists of documents for which the classes are unknown to the classifier.
After being trained, the classifier is used to predict the set of classes for such
test documents.

A multi-label classifier typically implements a real-valued function of the
form f : D × C → R that returns a value to each pair 〈dj , ci〉 ∈ D × C that,
roughly speaking, represents the evidence for the fact that the test document
dj should be classified under the class ci. The real-valued function f(., .) can
be transformed to a ranking function r(., .) that is a one-to-one mapping onto
{1, 2, . . . , |C|}, such that if f(dj , c1) > f(dj , c2) then r(dj , c1) < r(dj , c2). If Cj

is the set of proper classes for the test document dj , then a successful classifier
will tend to rank classes in Cj higher than those not in Cj . Those classes that
rank above a threshold τ (i.e., ck|f(dj , ck) ≥ τ) are then assigned to the test
document.



The evaluation of multi-label classifiers is more complex than the evaluation
of the traditional single-label ones. The most popular metrics in the literature
for single-label learning systems are precision, recall and the F-measure [1]. For
evaluating the classification performance of Vg-ram wnn, we have used five
multi-label evaluation metrics proposed in [3]:

Hamming Loss (hlossj): evaluates how many times the test document dj is
misclassified, i.e., a class not belonging to the document is predicted or a
class belonging to the document is not predicted.

hlossj =
1

|C|
|Pj∆Cj | (1)

where |C| is the number of classes and ∆ is the symmetric difference between
the set of predicted classes Pj and the set of appropriate classes Cj of the
test document dj .

One-error (one-errorj): evaluates if the top ranked class is present in the set
of proper classes Cj of the test document dj .

one-errorj =

{

0 if [arg maxc∈Cf(dj , c)] ∈ C
1 otherwise.

(2)

where [arg maxc∈Cf(dj , c)] returns the top ranked class for the test document
dj .

Coverage (coveragej): measures how far we need to go down the rank of
classes in order to cover all the possible classes assigned to a test document.
It is loosely related to precision at the level of perfect recall.

coveragej = maxc∈Cj
r(dj , c) − 1 (3)

where maxc∈Cj
r(dj , c) returns the maximum rank for the set of appropriate

classes of the test document dj .
Ranking Loss (rlossj): evaluates the fraction of class pairs 〈ck, cl〉, for which

ck ∈ Cj and cl /∈ Cj , that are reversely ordered (i.e., r(dj , cl) > r(dj , ck)) for
the test document dj .

rlossj =
|{(c1, c2)|f(ci, y1) ≤ f(ci, y2), (y1, y2) ∈ Cj × C̄j}|

|Cj ||C̄j |
(4)

where C̄j is the complementary set of Cj in C.
Average Precision (avgprecj): evaluates the average fraction of classes ranked

above a particular class c ∈ Cj which actually are in Cj . This is the non-
interpolated average precision, a metric frequently used for evaluation of
information retrieval systems [15]. We note that the non-interpolated aver-
age precision is typically used in information retrieval systems to evaluate
the document ranking for query retrieval. In contrast, in our experiments we
use average precision for evaluating class rankings.

avgprecj =
1

|Cj |

∑

c∈Cj

|{c′|r(dj , c
′) ≤ r(dj , c), c

′ ∈ Cj}|

r(dj , c)
(5)



For p test documents, the overall performance is obtained by averaging each
metric, that is hloss = 1

p

∑p

j=1
hlossj , one-error = 1

p

∑p

j=1
one-errorj , coverage =

1

p

∑p

j=1
coveragej , rloss = 1

p

∑p

j=1
rlossj , and avgprec = 1

p

∑p

j=1
avgprecj . The

smaller the value of hamming loss, one-error, coverage and ranking loss, and the
larger the value of average precision, the better the performance of the classifier.
The performance is perfect when hloss = one-error = rloss = 0 and avgprec = 1.

3 Weightless Neural Network

RAM-based neural networks, also known as n-tuple classifiers or weightless neu-
ral networks (WNNs), do not store knowledge in their connections but in Ran-
dom Access Memories (RAMs) inside the network’s nodes, or neurons. These
neurons operate with binary input values and use RAMs as lookup tables: the
synapses of each neuron collect a vector of bits from the network’s inputs that
is used as the RAM address, and the value stored at this address is the neuron’s
output. Training can be made in one shot and basically consists of storing the
desired output in the address associated with the input vector of the neuron [16].

In spite of their remarkable simplicity, RAM-based neural networks are very
effective as pattern recognition tools, offering fast training and easy implemen-
tation [17]. However, if the network input is too large, the memory size becomes
prohibitive, since it must be equal to 2 to the power of the input size. Virtual
Generalizing RAM (VG-RAM) networks are RAM-based neural networks that
only require memory capacity to store the data related to the training set [13]. In
the neurons of these networks, the memory stores the input-output pairs shown
during training, instead of only the output. In the test phase, the memory of
VG-RAM neurons is searched associatively by comparing the input presented
to the network with all inputs in the input-output pairs learned. The output
of each VG-RAM neuron is taken from the pair whose input is nearest to the
input presented—the distance function employed by VG-RAM neurons is the
hamming distance. If there is more than one pair at the same minimum distance
from the input presented, the neuron’s output is chosen randomly among these
pairs.

Figure 1(a) shows the lookup table of a VG-RAM neuron with three synapses
(X1, X2 and X3). This lookup table contains three entries (input-output pairs),
which were stored during the training phase (entry #1, entry #2 and entry
#3). During the test phase, when an input vector (input) is presented to the
network, the VG-RAM test algorithm calculates the distance between this input
vector and each input of the input-output pairs stored in the lookup table. In
the example of Figure 1(a), the hamming distance from the input to entry #1 is
two, because both X2 and X3 bits do not match the input vector. The distance
to entry #2 is one, because X1 is the only non-matching bit. The distance to
entry #3 is three, as the reader may easily verify. Hence, for this input vector,
the algorithm evaluates the neuron’s output, Y , as class 2, since it is the output
value stored in entry #2.



(a) (b)

Fig. 1. (a) VG-RAM neuron lookup table; (b) Vg-ram wnn architecture employed.

To classify text documents using Vg-ram wnn, we represent a document
as a multidimensional vector V = {v1, . . . , v|V |}, where each element vi corre-
sponds to the number of times a term in the vocabulary of interest appears in
this document. We use single layer Vg-ram wnn (Figure 1(b)) whose neurons’
synapses X = {x1, . . . , x|X|} are randomly connected to the network’s inputs
N = {n1, . . . , n|N |}, which has the same size of the vectors representing the
documents, i.e., |N | = |V |. Note that |X | < |V | (our experiments have shown
that |X | < |V | provides better performance). Each neuron’s synapse xi forms a
minchinton cell with the next, xi+1 (x|X| forms a minchinton cell with x1) [18].
The type of the minchinton cell we have used returns 1 if the synapse xi of the
cell is connected to an input element nj whose value is larger than that of the
element nk to which the synapse xi+1 is connected (i.e. nj > nk); otherwise, it
returns zero. During training, for each document in the training set, the corre-
sponding vector V is connected to the Vg-ram wnn’ inputs N and the neurons
outputs O = {o1, . . . , o|O|} to one of its classes. All neurons of the Vg-ram

wnn are then trained to output this class with this input vector. The training
for this input vector is repeated for each class associated with the correspond-
ing document. During test, for each test document, the inputs are connected to
the corresponding vector and the number of neurons outputting each class is
counted. The network output is computed by dividing the count of each class
by the number of neurons of the network. This output is organized as a vector
whose size is equal to the number of classes. The value of each vector element
varies from 0 to 1 and represents the percentage of neurons which presented
the corresponding class as output (the sum of the values of all elements of this
vector is always equal to 1). This way, the output of the network implements
the function f(., .), defined in Section 2. A threshold τ may be used with the
function f(., .) to define the set of classes to be assigned to the test document.

4 Experimental Evaluation

In this section, we present our experimental methodology and analyze our ex-
perimental results.



Table 1. Characteristics of the Web page data sets (after term selection). NC denotes
the number of classes, SV denotes the size of the vocabulary, PMC denotes the percent-
age of documents belonging to more than one class, ANL denotes the average number
of classes for each document, and PRC denotes the percentage of rare classes, i.e. the
kind of class where only less than 1% documents in the data set belong to it.

NC SV Training(-and-validation) set Test set
Data set PMC ANL PRC PMC ANL PRC

Arts&Humanities 26 462 44.50% 1.63 19.23% 43.63% 1.64 19.23%
Business&Economy 30 438 42.20% 1.59 50.00% 41.93% 1.59 43.33%
Computers&Internet 33 681 29.60% 1.49 39.39% 31.27% 1.52 36.36%
Education 33 550 33.50% 1.47 57.58% 33.73% 1.46 57.58%
Entertainment 21 640 29.30% 1.43 28.57% 28.20% 1.42 33.33%
Health 32 612 48.05% 1.67 53.13% 47.20% 1.66 53.13%
Recreation&Sports 22 606 30.20% 1.41 18.18% 31.20% 1.43 18.18%
Reference 33 793 13.75% 1.16 51.52% 14.60% 1.18 54.55%
Science 40 743 34.85% 1.49 35.00% 30.57% 1.43 40.00%
Social&Science 39 1 047 20.95% 1.27 56.41% 22.83% 1.29 58.97%
Society&Culture 27 636 41.90% 1.71 25.93% 39.97% 1.68 22.22%

4.1 Data Set

Ueda and Saito [7] evaluated the performance of probabilistic generative models
on the classification of real World Wide Web pages. They tried to classify real
Web pages linked from the “yahoo.com” directory. The Yahoo directory con-
sists of 14 top-level classes (i.e., ”Arts & Humanities”, ”Business & Economy”,
”Computers & Internet”, and so on), and each class is categorized into a num-
ber of second-level subclasses. By focusing on these sub-classes, one can devise
14 independent text classification problems. Ueda and Saito studied 11 of these
14 problems. Zhang and Zhou [11] proposed a lazy learning approach to multi-
label learning and used the same 11 text classification problems (of Ueda and
Saito [7]) to evaluate the performance of their multi-label learning algorithm.
To reduce the dimensionality of each data set, they used a simple term selection
method based on document frequency (the number of documents containing a
specific term). Only the top 2% terms with highest document frequency were
retained in the final vocabulary. After term selection, each document in the data
set was described as a multidimensional vector using the “Bag-of-Words” rep-
resentation [19], i.e., each dimension of the vector corresponds to the number
of times a term in the vocabulary appears in the corresponding document. We
used Zhang and Zhou’s data sets to evaluate the performance of Vg-ram wnn.
Table 1 summarizes the characteristics of the Web page data sets1. For each
problem, the training(-and-validation) set contains 2000 documents while the
test set contains 3000 documents.

1 The characteristics of the Web page data sets were obtained from the work presented
in [11].



4.2 Results

To implement Vg-ram wnn, we used the Event Associative Machine (MAE) [20],
an open source framework for modeling VG-RAM neural networks developed at
the Universidade Federal do Esṕırito Santo.

Table 2. Parameters of Vg-ram wnn that yield the best performance.

Data set Number of neurons Number of synapses Threshold τ

Arts&Humanities 1024 64 0.2
Business&Economy 1024 64 0.2
Computers&Internet 1024 64 0.4
Education 1024 128 0.4
Entertainment 1024 128 0.3
Health 1024 128 0.2
Recreation&Sports 1024 64 0.2
Reference 1024 64 0.5
Science 1024 64 0.2
Social&Science 1024 128 0.4
Society&Culture 1024 64 0.3
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Fig. 2. Experimental results of each multi-label learning algorithm on the Web page
data sets in terms of hamming loss. The smaller the value of hamming loss, the better
the performance of the classifier.

In order to optimize a Vg-ram wnn classifier, its parameters, i.e. number of
neurons, number of synapses per neuron and threshold τ (Section 3), must be
tuned by testing which values yield the best performance. To avoid taking advan-
tage of the test set to optimize the classifier used on each of the 11 problems, we
divided the 2000 documents training(-and-validation) set TV = {d1, . . . , d|TV |}
of each problem into a 1500 documents training set Tr = {d1, . . . , d|Tr|}, from
which the classifier were inductively built, and a 500 documents validation set
V a = {d|Tr|+1, . . . , d|TV |}, on which the repeated evaluations of the classifier
aimed at parameter optimization were performed. Table 2 shows, for each one



of the 11 text classification problems, the parameters that yield the best perfor-
mance in terms of the five multi-label evaluation metrics adopted (Section 2).
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Fig. 3. Experimental results of each multi-label learning algorithm on the Web page
data sets in terms of one-error. The smaller the value, the better the performance.

Once its parameters are estimated, we can use Vg-ram wnn to predict the
set of classes of the test documents. We compared Vg-ram wnn classification
performance with that of: the boosting-style algorithm Boostexter [3], the
multi-label kernel method Rank-svm [5], the multi-label decision tree Adt-

boost.MH [6]2, and the multi-label lazy learning approach Ml-knn [11]. We
believe that these classifiers are representative of some of the most effective
multi-label text classification methods available.
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Fig. 4. Experimental results of each multi-label learning algorithm on the Web page
data sets in terms of coverage. The smaller the value, the better the performance.

2 Note that Adtboost.MH does not provide a ranking of classes; thus, this ranking

loss metric could not be used.



For Boostexter and Adtboost.MH, the number of boosting rounds was
set to be 500 and 50, respectively. For Rank-svm, polynomial kernels with
degree 8 were used. For ML-knn, k was set to 10 and Euclidean metric was
used to measure distances between documents3. For each data set, the multi-
label algorithms were trained with the 2000 documents in the the training(-and-
validation) set and tested with the 3000 documents in the test set.
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Fig. 5. Experimental results of each multi-label learning algorithm on the Web page
data sets in terms of ranking loss. The smaller the value, the better the performance.

Average precision
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Fig. 6. Experimental results of each multi-label learning algorithm on the Web page
data sets in terms of average precision. The larger the value, the better the performance.

Figures 2 to 6 show the experimental results of each multi-label classification
technique on all the Web page data sets in terms for hamming loss, one-error,
coverage, ranking loss, and average precision, respectively. These plottings also
show the averages for each evaluation metric over all data sets. On average, Vg-

3 The results for Boostexter, Rank-svm, Adtboost.MH, and ML-knn were ob-
tained from the work presented in [11].



ram wnn performs better than the other algorithms in terms of hamming loss,
coverage, ranking loss and average precision, and is far superior than Rank-svm

in terms of coverage and ranking loss—Vg-ram wnn shows gains of 49.36% in
terms of coverage (Figure 4) and 52.02% in terms of ranking loss (Figure 5),
considering Rank-svm as the baseline. Vg-ram wnn also performs better than
ML-knn in terms of ranking loss (Figure 5) and coverage (Figure 4), showing
gains of 9.57% and 7.21%, respectively. Finally, Vg-ram wnn performs better
than Adtboost.MH in terms of hamming loss (Figure 2) and than Boostex-

ter in terms of average precision (Figure 6), with gains of 0.47% and 0.05%,
respectively. Vg-ram wnn shows inferior, although comparable performance in
terms of one-error; but, it is worthy to note that all classifiers examined here
perform poorly in terms of one-error—on average, in 45.81% of the documents
tested the top-ranked class was not in the set of appropriate classes predicted
for the documents (Figure 3).

5 Conclusions and Future Work

In this work, we presented an experimental evaluation of the performance of
virtual generalizing random access memory weightless neural networks (Vg-

ram wnn [13]) on multi-label text classification. We compared the Vg-ram

wnn classification performance with that of the boosting-style algorithm Boos-

texter [3], the multi-label kernel method Rank-svm [5], multi-label decision
tree Adtboost.MH [6], and multi-label lazy learning techniques Ml-knn [11].
Our experimental results showed that, on average, Vg-ram wnn outperforms
the comparing algorithms in terms of hamming loss, coverage, ranking loss and
average precision, and is far superior to Rank-svm in terms of coverage and
ranking loss, showing gains of up to 52%. As future work, we intend to evaluate
the classification performance of Vg-ram wnn using different multi-label appli-
cation scenarios, such as image annotation and gene functional prediction. We
also intend to use correlated Vg-ram wnn [21] and examine other mechanisms
for taking more advantage of the correlation between classes in order to improve
classification performance.
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