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Executive Summary 

The Urban Challenge represents a technological leap beyond the previous Grand Challenges.  The 

challenge encompasses three primary behaviors: driving on roads, handling intersections and 

maneuvering in zones.  In implementing urban driving we have decomposed the problem into five 

components.  Mission Planning determines an efficient route through an urban network of roads.  A 

behavioral layer executes the route through the environment, adapting to local traffic and exceptional 

situations as necessary.  A motion planning layer safeguards the robot by considering the feasible 

trajectories available, and selecting the best option.  Perception combines data from lidar, radar and 

vision systems to estimate the location of other vehicles, static obstacles and the shape of the road.  

Finally, the robot is a mechatronic system engineered to provide the power, sensing and mobility 

necessary to navigate an urban course. 

Rigorous component and system testing evaluates progress using standardized tests.  Observations 

from these experiments shape the design of subsequent development spirals and enable the rapid 

detection and correction of bugs. The system described in the paper exhibits a majority of the basic 

navigation and traffic skills required for the Urban Challenge.  From these building blocks more 

advanced capabilities will quickly develop. 
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Introduction and Overview 
Reliable autonomous urban driving will be a revolutionary technology.  It will enable 

uncrashable cars, driver assists, and enable robotic applications in both industrial and military 

sectors.  The Urban Challenge represents a bold step towards fully capable autonomous urban 

vehicles.    

At the highest level of autonomy, the problem is to find an efficient route through an urban road 

network with prescribed waypoints and parking spots. The three primary implementation skills 

are; driving in traffic, negotiating intersections and parking.  Each represents a formidable 

reasoning, motion-planning and perceptual problem. The driving in traffic component alone 

represents a superset of previous Grand Challenge capability.  

Motion planning must account for the kinematic and dynamic limitations of the vehicle, while 

constantly acting to avoid collisions and unsafe driving.  On roads, the shape and width of the 

road constrain the planning problem, simplifying the search for viable trajectories.  In parking 

lots, a more extensive search is necessitated to deal with both the freedom of motion and tight 

pose constraints necessitated by parking.  Correctly solving these problem requires two distinct 

planning modes.   

Perception must have sufficient fidelity and field of view to determine the location of other 

vehicles, roads and unexpected obstacles, all in a cluttered environment. No single sensing mode 

is sufficient to accomplish all of these requirements, so a combination of lidar, radar and visual 

sensing is necessitated. 

To meet the challenge in the short time frame, we are using a spiral development process.  Each 

spiral innovates a new capabilities.  Each spiral matures and tests solid functionality. At the 

beginning of each spiral, the system is analyzed and new design decisions and tradeoffs are 

made.  This technical paper represents much of the current conceptual design for each 

subsystem, current performance and a number of tradeoffs and analyses that were made during 

development. 

Theory of Autonomous Operation 

The task of autonomous urban driving can be decomposed into five major blocks (see Figure 1): 

Mission Planning – The Mission Planning component computes the cost (as a function of time 

and risk) of all possible routes through the world given knowledge of the road network from the 

RNDF and the next checkpoint that the vehicle must achieve.  The mission planner reasons about 

the optimal path to a particular checkpoint much like a human would plan a route from their 

current position to a destination, such as a grocery store or gas station.  The mission planner 

compares routes based on prior knowledge of congestion or blockages, construction, and the 

legal speed limit. 
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Figure 1. The Tartan Racing architecture is decompsed into five broad areas: Mission Planning, Motion 
Planning, Behavior Generation, Perception and World Modeling, and Mechatronics. 

Behavior Generation – The Behaviors component formulates a problem definition for the 

Motion Planning component to solve based on the strategic information provided by the Mission 

Planning component.  The Behaviors component is implemented as a state machine that 

decomposes the mission task into a set of top-level behaviors and their simpler, sub-behaviors in 

order to complete a mission.  These top-level behaviors include Drive-Down-Road, Handle-

Intersection, and Achieve-Zone-Pose.  The state machine will trigger different behaviors based 

on the progress being reported by the motion planners, overall health of the various vehicle and 

software systems, and the current objectives set forth by the mission planner. 

Motion Planning – The Motion Planning component consists of several motion planners, each 

capable of avoiding static and dynamic obstacles while achieving a desired vehicle state. Two 

broad scenarios are considered: structured driving (road following) and unstructured driving 

(parking lot).  For structured driving, a Local Planner is capable of generating a trajectory that 

will result in the vehicle following the centerline of a lane. For unstructured driving, such as 

entering/exiting a parking lot, a 3D (position and orientation) planner is used.  Regardless of the 

planner that is executing, the result is a trajectory that when executed by the vehicle controller, 

will safely drive  toward a particular goal point. 

Perception & World Modeling – The P&WM component interprets the information from various 

sensors and fuses the multiple streams together to provide a composite picture of the world to the 

rest of the system.  The composite model is divided into several discrete interfaces: static 

obstacle maps, dynamic obstacle maps, visibility, health, current vehicle pose, and road structure. 

Mechatronics – The electrical and mechanical components provide a way for algorithms to 

interact with the world.  A critical part of the mechatronic design is the analysis of sensing 

requirements and sensor capabilities.  The robotic vehicle, Boss, shown in Figure 2 is designed to 

be robust and provide the power, cooling and actuation necessary to support autonomy. 

In the following sections each of these areas will be addressed in greater detail.  Each section 
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includes a discussion of the design and performance results to date.  The Algorithms and 

Mechatronics sections are followed by a section describing our testing process and overall 

system performance to date. 

 

Figure 2. Boss, the Tartan Racing robot, is built on a Chevrolet Tahoe chassis.  It incorporates a variety of 
lidar, radar and visual sensors to safely navigate urban environments. 

Algorithms for Autonomous Urban Driving 
There are three layers of continuous planning in the software architecture beginning with the 

Mission Planning, then Behavior Generation, and finally the Motion Planning.  Each of these 

layers makes decisions based on the best information available from the Perception subsystem. 

The Mission Planner is reasoning about the best path from each waypoint to the next checkpoint.  

The Behavior Generation subsystem initiates inter-lane, inter-road, and parking-lot maneuvers, 

while the Motion Planner executes these maneuvers and initiates intra-lane maneuvers, such as 

in-lane obstacle avoidance. 

Mission Planning 

To generate mission plans, the data provided in the Route Network Definition File (RNDF) is 

used to create a graph that encodes the connectivity of the environment.  Each waypoint in the 

RNDF becomes a node in this graph, and directional edges (representing lanes) are inserted 

between a given waypoint and all other waypoints that it can reach.  For instance, an exit 

waypoint at an intersection will have edges connecting it to all the entry waypoints at the 

intersection that could be legally reached by a vehicle positioned at the exit waypoint.  These 

edges are also assigned costs based on a combination of several factors, including expected time 

to traverse the edge, length of the edge, and complexity of the local environment.  Behavior 

Generation uses this cost graph in conjunction with local, dynamic information to make 

decisions about travel roads and lanes.  

The cost graph is searched to compute a minimum-cost path from each position in the graph to a 

desired goal position, such as the first checkpoint in the mission.  In addition to providing the 

executive more information to reason about, computing minimum-cost paths from every position 

in the graph is useful because it allows the navigation system to behave correctly should the 
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vehicle be unable to perfectly execute the original plan (e.g. if a particular intersection is passed 

through by mistake, we can immediately extract the current best path from the vehicle's 

position).   

As the vehicle navigates through the environment, the mission planner updates its graph to 

incorporate newly-observed information, such as road blockages or previously-unknown 

intersections or roads.  Each time a change is observed, the mission planner re-generates a new 

plan.  Because the size of the graph is relatively small, this replanning can be performed 

extremely quickly, allowing for immediate response to environmental changes.  

Behavior Generation  

The behavioral design is based on the concept of identifying driving contexts, where each 

context requires the vehicle software to focus on a reduced set of environmental features. At the 

highest level of our current design, the three contexts are Drive Down Road, Handle Intersection, 

and Achieve Zone Pose (e.g., Parking). The name “Achieve Zone Pose” stems from its coverage 

of sub-behaviors in unstructured or unconstrained environments,  This is not specific just to 

parking lots, but can be used to U-turn and navigating a jammed intersection.  

The Drive Down Road behavior (Figure 3) is responsible for on road driving. The primary sub-

behavior is Drive In Lane, which includes a distance-keeping behavior in the presence of a lead 

vehicle. The Lane Selector makes lane-change decisions based on a tradeoff between making 

timely progress in the current lane and the necessity of being in the correct lane in order to 

achieve specified checkpoints.  

Road fully
blocked

Sensing
OK

Monitor

Sensing

Monitor 
Checkpoints

Monitor 
Progress

Drive Down 
Road

Pass

Progress limited

Sensing failure

Pull Over

Defensive
Lane Change

Drive In
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Obstacle within 

stopping 

distance

Success

Change Lane
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Missed 
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Figure 3. The Drive Down Road behavior. The Lane Selector portion is enclosed by dotted lines. 

The distance-keeping behavior aims simultaneously to zero both the difference between our 

vehicle’s velocity and that of the lead vehicle, and the difference between the desired and actual 

inter-vehicle gaps. The commanded velocity is therefore:  

 vcmd = vlead + K·(gapactual – gapdesired) (1) 

where vlead is the lead-vehicle velocity and K is a settable gain. The desired gap is:  

 gapdesired = max{(lvehicle/10)·vactual, absMinGap} (2) 

where lvehicle is the length of a vehicle, (lvehicle/10) represents the one-vehicle-length-per-10-mph 

minimum-gapping requirement, and absMinGap is the absolute minimum gap requirement. For 

safety and smoothness, the commanded vehicle acceleration is made proportional to the 
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difference between the commanded and actual velocities and capped at maximum and minimum 

values. The distance-keeping behavior has been tested extensively and successfully in simulation 

and on the vehicle. 

The Lane Selector portion of Drive Down Road currently has a simple implementation which 

causes the vehicle to enter the checkpoint lane at a settable distance from the checkpoint. A more 

comprehensive design that determines feasibility of merging and passing based on the current 

and predicted state (position, velocity, acceleration) of local traffic and distance to the next 

checkpoint is nearly complete and will soon be tested in the simulator and on the vehicle. The 

accompanying logic includes consideration of the Urban Challenge rules for valid vehicle 

spacing, the current speed limit, and maximum and minimum vehicle acceleration, and specifies 

a value function embodying lane preferences. 

The Handle Intersection behavior (Figure 4) establishes a polygonal zone around an intersection 

and tracks all vehicles within that zone. Those that have arrived at a stop line before our vehicle 

are yielded precedence. Once our vehicle determines that it has precedence, it checks for the 

intersection to be clear of obstacles and vehicles completing their exit from the intersection or 

disobeying precedence rules. It then traverses the intersection in a “virtual lane” created by 

connecting the exit point of the current lane and the entry point of the goal lane. This portion of 

the Handle Intersection behavior (outlined by a dotted line in the figure) has been tested 

extensively and successfully in simulation and on the vehicle. Figure 5 shows the Handle 

Intersection behavior in action, operating on the robot using actual perception data.  Current 

work on this behavior involves handling anomalous cases, including near-simultaneous arrival, 

various types of rule-breaking by other vehicles, and intersection blockage. 
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Figure 4. Schematic representation of the “Handle Intersection” behavior. 
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(a) (b) (c)

(d) (e) (f)  

Figure 5. (a) The robot approaches an intersection and identifies a waiting car (rectangle marked by a teal 
diamond). As the gets closer (b) it detects a second vehicle (rectangle, left of frame), and upon coming to 
a stop (c) tracks a third vehicle which arrives late (rectangle middle of frame).  (d) The first vehicle begins 
moving through the intersection, and precedence is transferred to the second vehicle, denoted by the teal 

diamond. (e) The second vehicle begins traversing the intersection. (f) Upon all clear, the robot takes 
precedence ahead of the third vehicle and safely navigates the intersection. 

The Achieve Zone Pose behavior specifies a desired pose for the Motion Planner to achieve.  In 

the general case, this behavior is invoked when the system needs to traverse a zone and park the 

vehicle.  As the system matures, this behavior will also be invoked when it is necessary to 

creatively find its way out of trouble, such as traversing a jammed intersection, or recovering 

from an off-road position to a position where the Drive Down Road behavior can resume. 

Motion Planning 

In contrast to the strategic level of planning performed by the Mission Planner, the motion 

planning layer is responsible for executing segments of a route.  This typically involves either 

driving down a lane when on roads or navigating through obstacle fields to a desired goal pose 

when in zones. 

Planning in Lanes 

Driving down road lanes relies on the perception sub-system to provide an indication of the 

current lane boundaries. From this information a curve representing the centerline of the current 

lane is computed.  This is the nominal path the vehicle should follow. 

To robustly follow the current lane and to avoid static and dynamic obstacles, a local motion 

planner generates trajectories to a set of local goals.  These goals vary in longitudinal distance 

from the vehicle and lateral distance from the centerline of the lane to allow for flexible vehicle 

movement.  A trajectory generation algorithm developed by Howard and Kelly [Howard 2006] is 
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used to compute dynamically feasible trajectories to these local goals.  This algorithm uses 

forward simulation and a high-fidelity vehicle model to accurately predict where the vehicle will 

end up after following some specified control trajectory. It then modifies the control trajectory in 

a series of optimization steps to minimize the error between the forwards-simulated vehicle 

position and the current desired goal position. The resulting optimized trajectories are then 

evaluated against both static and dynamic obstacles in the environment, as well as their distance 

from the centerline path, their smoothness, and various other metrics.  The best trajectory 

according to these metrics is selected and executed by the vehicle.  Because the trajectory 

generator computes the feasibility of each trajectory using an accurate vehicle model, the 

selected trajectory can be directly executed by a vehicle controller. 

(a) (b)

(c) (d)  

Figure 6.  An illustration of the local planner following a road lane. 

Figure 6 provides an example of the local planner following a road lane.  Figure 6a shows the 

vehicle navigating down a single-lane road (lane boundaries shown in blue, current curvature of 

the vehicle shown in pink, minimum turning radius arcs shown in yellow).  Figure 6b shows the 

extracted centerline of the lane (in red).  Figure 6c shows candidate trajectories generated by the 

vehicle given its current state, the centerline path and lane boundaries.  A single trajectory is 

selected for execution, as discussed above.  Figure 6d shows the same scenario from an 

alternative viewing angle. 

Planning in Zones 

Driving in unstructured environments, such as zones, significantly differs from driving on roads. 

When traveling on roads, the road lane implicitly provides a preferred pose of the vehicle 

(typically the centerline of the current lane).  In parking lots there are no driving lanes and thus 
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the movement of the vehicle is far less constrained.  Further, it is often the case that in zones we 

are trying to reach very specific goal poses (such as a particular parking spot) rather than just 

following a specific lane. 

To efficiently plan a path to a distant goal pose in a zone, we use a lattice planner that searches 

over vehicle position and orientation.  The set of possible local maneuvers considered for each 

state in the planner's search space are constructed offline using the trajectory generator, so they 

can be accurately executed by the vehicle.  This planner searches in a backwards direction, from 

the goal pose towards the vehicle pose, and generates feasible high-fidelity maneuvers that are 

collision-free with respect to the static obstacles observed in the environment.   

To efficiently generate complex plans over large, obstacle-laden environments, the planner relies 

on an anytime, replanning search algorithm known as Anytime D*, developed by Likhachev et 

al. [Likhachev2005].  Anytime D* quickly generates an initial, suboptimal plan for the vehicle 

and then improves the quality of this solution while deliberation time allows.  When new 

information concerning the obstacles in the environment is received, Anytime D* is able to 

efficiently repair its existing solution to account for the new obstacle information.  This repair 

process is facilitized by performing the search in a backwards direction, as updated obstacle 

information in the vicinity of the vehicle therefore affects a smaller portion of the solution. 

Performing the search in a backwards direction also results in a nearly computation-free re-

planning when the vehicle deviates from its path due to tracking errors. 

The resulting plan is tracked by the local planner in a similar manner to the paths extracted from 

road lanes.  The local planner generates a set of trajectories that attempt to follow the plan while 

also allowing for limited deviation to account for dynamic obstacles and execution inaccuracy.  

(a) (b)

(c) (d)  

Figure 7. An illustration of the local planner following a lattice plan through a zone. 
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Figure 7 provides an example of the local planner following a lattice plan to a specified parking 

spot.  Figure 7a shows the lattice plan generated for the vehicle (in red) towards the desired 

parking spot (parking spot boundary shown as white lines, desired pose of the vehicle shown as 

the white arrow).  Figure 7b shows the set of trajectories generated by the vehicle to track this 

plan, and Figure 7c shows the vehicle bounding boxes overlaid onto the points in these 

trajectories for collision-checking and cost evaluation by the local planner (this step is also 

performed during on-road driving).  From these trajectories, a single one is selected to be 

executed by the vehicle.  Figure 7d shows the same scenario from an alternative viewing angle. 

This lattice planner is flexible enough to be used in a large variety of cases that can occur during 

the Urban Challenge. For instance, it can be used when navigating congested intersections, to 

perform U-turns, and to get the vehicle back on track after emergency defensive driving 

maneuvers. 

Perception & World Modeling 

Tartan Racing’s perception system is responsible for addressing three critical functions.  These 

are: the detection and tracking of moving obstacles, the detection of static obstacles, estimating 

the shape of the road. 

Moving Obstacle Fusion 

Moving obstacles are tracked using several lidar and radar.  Each of these sensors has different 

sensing characteristics.  Some of the sensors generate raw data while other perform their own 

internal modeling, prediction, and tracking.  The primary job of the sensor fusion module is to 

provide an abstract way to fuse these different sensor and tracking modalities into a single 

unified list of tracked objects. 

Signal Processing
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Classification (sensor specific)

Classification (global)

Object-

management
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List of moving targets
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Figure 8. The moving obstacle fusion architecture supports multiple types of sensors. 



-12- 

Similar to an architecture described in [Darms 2005], our moving obstacle fusion architecture 

consists of three specific layers: sensor, fusion, and situation assessment (see Figure 8).The 

sensor layer maintains a list of individual sensors whose data will be fused into a single coherent 

list of tracked objects.  Each sensor’s data is treated independently, regardless of whether it has 

the same type (e.g. a SICK lidar) as another.  Thus the fusion algorithm is responsible for 

processing the data from many different input sources.  Each measurement is associated with an 

existing tracked object.  Since measurements can be ambiguous, such as in the case of a lidar 

detecting a small part of the side of a vehicle, there are often multiple ways that the measurement 

can be associated.  Each of these possibilities is analyzed and a quality measurement is generated 

for each whereby the best global combination of all measurements is chosen.  Measurements that 

do not associate with existing objects will propose the creation of a new object.  The sensor layer 

is also responsible for providing an initial classification of the object which is dependent on the 

sensor’s characteristics.  For instance, radars are unable to discern the shape of an object whereas 

lidar can detect whether the object is shaped like a car.  The specific classification of the object 

also determines the basic dynamic models used by the trackers. 

The fusion layer takes each sensor’s list of associated (and unassociated) measurements and 

applies each to the global list of tracked objects.  The fusion layer analyzes the proposed object 

types and decides whether a change to a more explicit object type, such as a vehicle, in to a less-

explicit object type such as a more general polygon is warranted based on the available 

information.  If a measurement suggests the creation of a new tracked object that did not exist 

before, information from the road world model, such as whether the new tracked object is 

actually near a road, is used as a gating mechanism to avoid the creation of spurious false 

objects. 

At the top level of the architecture is the situation assessment layer.  This layer attempts to 

estimate the “intention” of the tracked object by integrating the estimates with knowledge about 

the road world model.  The planning and behavior modules of the Tartan Racing robots require a 

mechanism for predicting the potential positions of other vehicles 10 seconds into the future.  

The individual model-based trackers (described below) are propagated and updated 

independently of each other and thus are insufficient to handle such long-term prediction, 

particularly in the case of potential interactions between vehicles at intersections and in parking 

lots.  The situation assessment model depends heavily on the domain in which the tracking is 

being performed.  For instance, intersections will require different top-level semantics from 

parking lots. 

The moving obstacle fusion module has been tested in a wide variety of different situations 

including (but not limited to) tracking vehicles: in the same lanes, in opposing lanes, performing 

a 3-point turn in the middle of the road (see Figure 9), driving in very erratic fashions, when our 

robot is being driven in an erratic fashion, and through traffic circles. This testing has identified 

several cases where the moving obstacle fusion module generates errors that include improperly 

tracked objects or initializes false objects.  One such problem occurs due to pitch and roll of the 

vehicle; sensors can either temporarily lose track of an object or inadvertently see the ground 

plane during a hard braking or acceleration maneuver as well as during sharp turns.  This 

problem will be addressed through filtering based on the vehicles inertial state.  A second 

challenge is correctly classifying objects.  The sensor fusion module currently models all returns 

from objects on the road as vehicles.  This problem has occasionally created “false” vehicles that 

extend out into the roadway and causing the robot to believe that a lane is blocked.  The fuser 
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will be extended to estimate object size to address this problem.  Additionally, the fuser will 

consider the object as only a point object until it is observed to move.   At that point, the object 

will be “upgraded” to a vehicle and tracked as such given that the only moving obstacles relevant 

to the urban challenge are vehicles. 

Moving Obstacle Tracking 

The underlying model of the obstacle fusion architecture is a simplified bicycle model that is 

used to represent the motion of a general vehicle.  The dynamic state model is 

),,,,,( avyxX ωψ=  where ),( yx  is the position of the vehicle’s center, ψ is the yaw angle, v  is 

the velocity, ω  is the yaw rate, and a  is the linear acceleration.  An Extended Kalman Filter 

[Bar-Shalom2001] state estimator is used to predict and update the state and uncertainty 

measurement for each tracked object.  Our approach makes use of a square root covariance 

scheme which is more numerically stable than a traditional EKF formulation due to the use of the 

so-called UdU factorization of the covariance matrix [Bierman1977].  The propagation model 

used by the architecture approximates constant acceleration and constant yaw rate. 

The individual sensor modalities each use specific algorithms to generate meaningful object 

observations from the raw data.  For instance, the three bumper-mounted SICK lidar use an 

algorithm similar to [Mertz2005] to cluster raw lidar returns into linear segments (single edge) 

and convex 90 degree corner (double edge) objects. 

(a) (b)

(c) (d)  

Figure 9. The moving obstacle fusion module following and tracking a vehicle as it performs a U-turn (a)-
(c).  The tracked vehicle is shown as a blue rectangle.  In (d), a hard brake maneuver pitches the robot’s 

sensors down causing “ghost” objects to appear due to sensor reflections from the ground. 



-14- 

Static Obstacle Detection 

The static obstacle detection algorithm uses downward looking laser sensors mounted on the roof 

of the robot to evaluate the terrain around the vehicle.  The algorithm computes a cost map 

representing the “traversability” of the terrain.  The core of the algorithm relies on comparisons 

of pairs of laser points.  This comparison calculates a cost based on the elevation difference 

between the two points and the angle of the vector connecting them, relative to ‘ground’.  The 

maximum elevation and angle differences are tunable parameters adjusted such that a cost of ‘1’ 

is considered ‘fatal’.  Each incoming laser point is compared to all of its neighbors that contain 

points and the maximum cost is recorded as the cost of that point.  The maximum cost for all 

points in a cell is maintained and placed in a cost map. 

To ensure that obstacles of a certain height are seen, the system maintains a history of points 

spanning a constant distance traveled by the vehicle, which ensures downward looking lasers to 

also scan a constant vertical distance for each planar location  To prevent storing excess points, 

laser scans are skipped with increasing frequency as vehicle speed drops.  The cost map is 

updated only in areas where a new point is inserted as costs would only change in these areas.  

So that terrain costs are not forgotten if a new laser point is inserted when all neighbor points 

have expired, the maximum cost for a cell is maintained for much longer than individual point.  

When a moving obstacle is detected the cost map is cleared of obstacles in that area.  As the cost 

map is only updated where new points are inserted, this is sufficient for removing the ‘snake’ of 

obstacles along the object’s path. 

The static obstacle detection algorithm combined with the current sensor calibration has proven 

sufficient for navigating obstacle courses of walls and cones with minimal errors.  Figure 10 

shows a picture of a scene with a building, fence, and various objects along with an image of the 

algorithm’s interpretation of the scene. 

Building Walls

Fence

Trees

Crate

Barrels

 

Figure 10. An illustration of the static obstacle map generation and its limitations. 

In this coloring scheme, green is safe terrain, yellow is less desirable and red is ‘lethal’.  The 

walls of the building and fence (out of the picture to the right) are clearly visible in the cost map 

as solid lines of red.  Additionally, the trees, crate and barrels also appear as lethal obstacles. 

The above figure was chosen to illustrate some flaws in the algorithm, specifically its weakness 

in the face of poor calibration.  The significant thickness of the walls in the cost map and the 

yellow (undesirable) pixels between the building and fence where the road is still moderately flat 

are due to improperly transforming laser data to world space.  The algorithm also sees foliage as 

obstacles, note the ‘lethal’ areas by the ramp caused by grass on the ground, a trait exacerbated 
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by poor calibration.  An additional weakness of the algorithm is its susceptibility to missing 

hanging cables. 

The accuracy of obstacle placement is clearly dependent on the sensor calibration and the 

resolution of the cost map.  At present, the algorithm properly places cones within 25 cm of their 

location.  In most cases this is sufficient to navigate through obstacle fields with cones and walls.    

Road Shape Estimation 

Urban driving is distinguished from off-road driving by the need to understand and respect lane 

boundaries.  In the context of the Urban Challenge, a strong prior model for the road shape is 

provided for much of the environment, via a route network description file and aerial imagery.  

However, due to potentially outdated aerial imagery and the absolute accuracy GPS, road lanes 

cannot be sufficiently located without perception.  To estimate road shape, both offline and real 

time perception techniques are needed.  Off-line, a learning based approach is used to combine 

the route network information with aerial imagery to improve prior road shape estimates. The 

algorithm is an extension of the Maximum Margin Planning and structured boosting approaches 

of [Ratliff2006, Ratliff2007].  This approach builds planning algorithms directly into the image 

processing: it allows planning in the image space between waypoints to extract road segments.  

The current algorithm combines image filters, convolution and neural network classifiers, as well 

as an efficient planning algorithm. A key to our approach is that improving any component 

should help our ability to extract roads: better filters make learning easier, better training 

algorithms improve generalization and performance, and better planning takes into account the 

types of maneuvers that real vehicles make on real roads.  Figure 11 shows some example roads, 

and the extracted road model.  

(a) (b) (c)  

Figure 11. Illustrates the off-line road shape extraction algorithm, (a) is an image of a road network, (b) 
shows the learned cost function and (c) shows the extracted road network. 

Road Shape Feature Detectors 

Online Road shape detection is primarily generated using range and intensity data from down-

looking short range lidars.   Changes in the intensity of the returned laser data is indicative of 

painted road lines.  In addition, relative changes from flat surfaces to raised curbs or drops to soft 

shoulders can be detected by looking for the appropriate geometric features.  These two cues are 

used to detect the boundaries of the lanes and thus the overall shape of the road.  Several 

algorithms identify the shape of the road from the returned lidar data.  These include Haar 

wavelet transforms, heuristic edge detection with adaptive thresholding, and dynamic 
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programming methods for optimal line splitting.  In the interest of space, only the first of these 

will be described here. 

Wavelet transforms provide a technique for efficiently performing multi-resolution analysis of a 

signal [Daubechies1992]. A base template, known as a mother wavelet, is chosen for a given 

transform; in this case, the Haar wavelet. The mother wavelet is used to generate a series of 

daughter wavelets, which are stretched versions of the mother wavelet. These daughter wavelets 

represent the template at different frequencies, and by sliding these daughter wavelets over the 

input signal and recording a measurement of the similarity between daughter wavelet and input 

signal, a multi-resolution template matching is performed. The Haar wavelet represents a 

numerical derivative as a template, resulting in a wavelet transform which performs derivatives 

at multiple resolutions [Haar 1910]. 

This approach leverages two key points: at coarse resolutions, the difference between roads and 

curbs tend to be significantly magnified, and a road tends to be uniform over a short region.  The 

basic algorithm performs a Haar wavelet transform over the heights of points in a lidar scan. The 

resultant derivatives are then taken at the coarsest resolution, and classified into either road 

candidates or curb candidates. These candidates are then expanded into the higher resolution 

derivatives, and a statistical model of the road is built from the road candidates. This model is 

used to reclassify candidate points, and the process is repeated until the highest resolution is 

reached.  

Examples of the algorithm's performance can be seen in the Figure 12 below, which display 

examples of output accumulated from this algorithm. In these images, white points represent the 

detected locations of the curb, with blue and green points representing LIDAR points collected 

from two vertically mounted, sideways looking SICK lasers. The algorithm clearly detects the 

road edges, even on banked curves with berms, or when the curb is not easily identifiable. 

Additional work in improving the filtering of detected points can narrow the range of detected 

curbs and improve robustness in ill-defined scenarios such as roads with roads surrounded by 

scattered brush. 

 

Figure 12. Examples of the Haar road edge detection algorithm operating on stretches of straight and 
banked roads.  Green and red dots show data from driver and passenger side looking SICK lasers.  The 

detected road edge is marked white. 
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Mechatronics for Autonomous Urban Driving 
The electrical and mechanical systems that constitute Boss (the Tartan Racing robot) (see Figure 

2) use a combination of off-the-shelf and custom developed components, selected with an 

emphasis on reliability and functionality.  The chassis is a Chevrolet Tahoe which was selected 

due to its integrated electronic interfaces, its high roof giving a good sensor perspective for 

detecting other vehicles, and its plentiful room on the inside for both developers and additional 

electronics.  

Mechatronic alterations include systems for vehicle automation, auxiliary power, computing, and 

sensor mounting.  Proven technology is used where available, with custom designs used only 

where necessary to gain significant performance improvements. 

Vehicle Automation 

Steering and brake/throttle are actuated by closed-loop control of motors acting on the steering 

column and brake and gas pedals.  Low level control of theses motors, along with the actuation 

of secondary driving controls (turn signals, transmission shifting, etc.) is performed utilizing a 

commercial-off-the-shelf system from Electronic Mobility Controls (EMC). 

While EMC provides physical controls for braking and steering, higher level control is still 

needed for driving.  An additional hard real-time embedded control unit accomplishes this task.  

This controller is responsible for vehicle functions such as velocity control and curvature control, 

as well as making sure the vehicle is safe in E-stop conditions. 

The real time controller receives vehicle control commands such as desired curvature and speed 

through a CAN bus and closes the control loop based on the error between commands and actual 

status with on-board sensors.  For curvature control, the control loop is primarily feedfoward 

control, supplemented by integral feedback for steady-state error correction.  The speed control 

structure includes two non-linear PID controllers one for throttle and one for brake, with logic 

that switches between the two, depending on the speed error.  The switched controller scheme is 

necessary since: 

• throttle and brake performances of a vehicle are dramatically different.  The brake 

system responds much faster to deceleration commands than the throttle system 

does to acceleration commands (controller/mechatronics or machine as a whole?) 

• the actuator for throttle and brake is a single motor system.  

 

Therefore, switching logic is used to move the actuator off the throttle to the brake as soon as 

possible, and vice versa, when such a need rises.  Figure 13 shows commanded and actual 

vehicle responses in curvature and speed controls. 
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(a) (b)  

Figure 13.Representative steering angle and speed response curves. 

Power Electronics 

The Tartan Racing robots utilize auxiliary power generation to support sensors and computing.  

To avoid interfering with base vehicle functions, and to provide a safe, highly reliable power 

source for low-level vehicle controls and the safety system, the stock vehicle power bus remains 

intact.  The auxiliary power system is a high voltage generator that is driven by the engine using 

a secondary serpentine belt.   

This generator provides up to 6 kilowatts of power, (which is considerably more than currently 

needed) depending on engine load.  It does this through the use of an Integrated Control System, 

which contains a series of power converters that convert the power from the high voltage 

produced by the generator to both direct current (DC) busses and alternating (AC) busses needed 

by the electronic equipment, while constantly managing power output, voltage levels, and 

temperatures of the generator and converters  

Power is distributed to components through an industrial grade vehicle electrical center.  This is 

a multi-function panel containing fuses, relays, and circuit breakers to protect components and 

subsystems on the vehicle.  Electrical circuits are organized in such a way that a single blown 

circuit will never completely blind or disable any sensor coverage areas.  As an additional 

precaution, sets of circuits/sensors are sequentially powered up, so that there is not a large 

voltage drop from powering-up the complete system simultaneously.  This also prevents startup 

errors on data-buses where multiple components are starting up at once.  

Sensors 

Selecting the right sensors is critical to efficient and safe autonomous urban driving.  Sensing 

horizons and fields of view are driven by the need to detect traffic while crossing an intersection 

or passing an obstacle in an opposing traffic lane.  To understand these requirements a series of 

experiments were performed to characterize the time required to make left and right turns, merge 

into 30mph traffic, and to pull out, pass, and re-enter a traffic lane while avoiding a static 

obstacle.  Figures 14 and 15 illustrate the timing and required sensing horizons for making a left 

turn across traffic and passing a stopped vehicle.   
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•Robot turns and accelerates to 30 mph in 

~7.5 sec, moving 51.5 m down road

•Traffic moves 102.5 m before robot is at full 

speed

•71 m sensing horizon (and spacing 

between other vehicles) is required

51.5 m

102.5 m

102.5 m

51 m 15 m

71 m

 

Figure 14. Making a left-hand turn into 30mph  traffic requires a 71m sensing horizon for a stock 
Chevrolet Tahoe 

•Robot pulls out, passes and returns to its own lane in 

5.7 seconds

•Oncoming traffic has moved 85.5 m down road before 

robot is fully back in lane

•120m sensing horizon is required to pass a single 

stopped vehicle

~20 m

85 m

15 m

120 m

 

Figure 15. Passing a stopped vehicle with 30mph oncoming traffic requires a 120m sensing horizon for a 
stock Chevrolet Tahoe. 

To meet these requirements in an arbitrary urban environment (where planar and vertical 

curvature are not constrained by highway codes) requires a 360° planar field of view with a large 

vertical field of view.  The tasks the perception system must perform include: 

• Determine it is safe to cross or merge with traffic at an intersection (>65m horizon) 

• Determine it is safe to pass a static obstacle in an oncoming traffic lane (>120m horizon) 

• Detect, localize and track vehicles such to hold separation distances (<30m horizon) 

• Estimate road shape and lane locations (<30m horizon) 

• Provide robust, redundant and complimentary sensing where possible 

Required Vertical Field of View 

The vertical field of view requirement is driven by the maximum change in grade anticipated on 

the course.  To bound the design, it is assumed that the maximum change in grade will be limited 

to 5% over an arbitrary distance greater than our maximum sensing horizon.  A 5% change in 
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grade implies a required vertical sensor field of view of   +/-2.8°.   

Required Lidar Horizontal Angular Resolution 

To detect an object reliably it is necessary to have at least two lidar returns from that object.  

Given this requirement, and the assumption that vehicles are nominally 2m wide, the required 

horizontal angular resolution for a lidar sensor can be expressed as a function of range as: 

 
R

h

1
=ϑ  (3) 

Given the range requirements for passing an obstacle in lane, and crossing an intersection, it is 

necessary to incorporate sensors with an angular resolution of better than 0.5°. 

Scan Frequency 

To track an object data must be associated between frames.  There is often some upper bound on 

the distance between the image of an object in sequential frames over which data association can 

be performed efficiently.  Since no vehicles are allowed to move faster than 13.4m/s and we are 

able to correct for the motion of our own vehicle, the required scan frequency from a sensor 

given a maximum allowable inter-frame motion  in meters (smax): 

 max/4.13 sf =  (4) 

Therefore, if we were to allow 1m of motion between frames, we would require a 13.4hz sensor.   

Sensors 

The Tartan Racing vehicles use a combination of sensors to both the necessary sensing 

requirements and some redundancy should sensors fail during operation.  The selected sensors 

are described in Table 1, and their role in the overall perception strategy is outlined in Table 2.   

Table 1. A description of the sensors incorporated onto the Tartan Racing Robots. 

Sensor Characteristics 

Applanix POS-LV 220/420 GPS / IMU 
 

• sub-meter accuracy with Omnistar VBS 
corrections 

• tightly coupled inertial/GPS bridges GPS-outages 

SICK LMS 291-S05/S14 Lidar 
 

• 180º / 90º x 0.9º FOV with 1º / 0.5º angular 
resolution 

• 80m maximum range 
Velodyne HDL-64 Lidar 
 

• 360º x 26º FOV with 0.1º angular resolution 

• 70m maximum range 

Continental ISF 172 Lidar 
 

• 12º x 3.2º FOV 

• 150m maximum range 

IBEO Alasca XT Lidar 
 

• 240º x 3.2º FOV 

• 300m maximum range 

Ma/Com Radar 
 

• 80º FOV 

• 27m maximum range 

Continental ARS 300 Radar 
 

• 60º / 17º x 3.2º FOV 

• 60m / 200m maximum range 

MobilEye Vision System 
 

• 45º x 45º FOV 

• ~35m effective range 
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Table 2.  The roles filled by different sensing modalities. Green indicates that the sensor is fully capable 
of filling this role, yellow indicates the sensor is capable given speed limitations. 

Role V
e
lo

d
y
n

e
 

S
IC

K
 

A
la

s
k

a
 X

T
 

IS
F

 1
7
2
 

A
R

S
 3

0
0
 

M
a
/C

O
M

 
R

a
d

a
r 

M
o

b
il
e
y

e
 

C
a
m

e
ra

 

Determine safe to cross/merge at intersection         

Determine safe to pass in oncoming traffic  
 

      

Detection & localize vehicles for separation         

Estimate road shape and lane locations         

Detection of static obstacles in the road         

Integration and Testing 
A comprehensive test and evaluation strategy is the pathway to a robust and reliable autonomous 

vehicle.  This strategy is as important to safe urban driving as the algorithmic advancements.  

Our process involves incrementally testing each component, as well as the system as a whole, as 

functionality is added and capabilities mature.  The software is tested at a unit, subsystem, and 

system level using a number of standard scenarios.  Each scenario specifies a particular RNDF 

and MDF that the system must execute along with various traffic and obstacle configurations.   

Simulation capabilities include the specification of scenarios that simulate traffic in order to 

develop and test the system off the vehicle.  Additionally, prior to testing with live traffic, the 

system can be configured to operate on a vehicle with simulation-in-the-loop, which provides a 

safe testing mechanism, prior to testing with real obstacles and traffic. 

The system is continuously subjected to five tiers of testing, ranging from the component level to 

full fledged on-vehicle testing with live traffic:  

Unit Testing – Unit tests are small, simple software tests written by the developer while writing a 

particular class or function.  Each individual test exercises a class method or function using a set 

of “interesting” inputs.  The objective is to verify that the class method or function being tested 

produces the correct state changes or output for the provided set of inputs. 

 

Subsystem Testing with Simulated Inputs – The software infrastructure includes functionality that 

allows any developer to easily log data from any software interface.  This data can later be 

played back for analysis, testing, debugging, etc.  A particular subsystem or individual process 

(task) can be run in isolation from the rest of the system while its interfaces are “simulated” by 

playing back data.  For example, a new static obstacle detection algorithm is tested easily by 

running the process in isolation, and playing back vehicle state (position information) and raw 

lidar data.  The obstacle detection algorithm receives the played back data through its interface as 

if it were talking to the real sensors, and the cost map is displayed in a debug tool for analysis.  

Testing the component in isolation made for a much easier integration with the rest of the system 

by finding bugs earlier in the process. 
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System Testing in Pure Simulation – The entire system can be executed on multiple computers 

while the various on-vehicle interfaces are simulated.  These interfaces can be simulated by 

playing back previously logged data such as lidar data, cost maps, vehicle state, or any other 

interface.  Additionally, a simulated robot can be configured to respond to vehicle commands, 

close the loop on position, and sending back an appropriate vehicle state message to the system.  

Any number of other simulated robots can also be run in the system according to a particular 

scripted behavior, in order to simulate live traffic (moving objects). 

System Testing on Vehicle with Simulation In the Loop – The system is executed on the robot, 

but rather than using live traffic and real perception to sense/track that traffic, simulation is used 

on board the robot to present simulated moving objects to the real system.  This allows the robot 

to ‘see’ and react to this virtual traffic without the risk of testing in the presence of other 

vehicles. 

System Testing on Vehicle with Live Traffic – The full-fledged system is executed in the presence 

of real traffic. 

Table 3.  TEC Elements have been divided among 8 system tests. 

Test # Description TEC Elements 

1 Checkpoints & Safety A1 Preparation for Run 
A2 Mission Start 
A3 Checkpoints 
Warning Devices etc. 

2 Intersection Handling A4 Stay in Lane 
A6 Excess Delay 
A8 Stop Lines 
B2 Intersection Precedence 

3 Separation in Lanes, Passing & Speed Limits A5 Speed Limits 
A9 Vehicle Separation 

4 Obstacle Avoidance, Parking & U-turns A10 Leaving Lane to Pass 
A11 Returning to Lane After Pass 
B3 Minimum Following Distance 
B4 Queuing 

5 GPS loss and Road Following C5 Road Following 
C6 GPS Outages 

6 Passing with Moving Obstacles D6 Zones 
D7 Emergency Braking 

7 Merging & Crossing Moving Traffic D2 Merge 
D3 Vehicle Separation During Merge 
D4 Left Turn 
D5 Vehicle Separation During Left Turn 

8 Route Blockage & Replanning C4 Dynamic Re-planning 
D8 Defensive Driving 
D9 Traffic Jam 

As part of the test process, standardized tests are completed once a week to evaluate system 

performance.  Tests are designed to judge capability relative to the Urban Challenge technical 

evaluation criteria and internally derived requirements.  Eight tests span the capabilities required 

for the Urban Challenge, as outlined in Table 3.    Frequent testing provides an up-to-the-minute 
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understanding of the capability of the overall system. 

To date, six weekly tests have been performed, progressing through the first four system tests.  

Each test is developed by a team external to the core development group.  Tests are designed to 

critically evaluate performance and challenge capability.  As an example, Figure 16 illustrates 

the obstacle configuration for the Obstacle Avoidance and Parking lot tests.   

 

Parking spot with curb

Parked car 20m long cone field

Walls with 4.5m 

wide opening

Zone Exit

1

2
3 4

5

6

 

Figure 16.  The standard parking lot test includes a challenging obstacle field and a narrow opening.  
During system tests, the robot has successfully navigated this parking lot. 

These tests represent a superset of the capabilities required for the Urban Challenge site visit.  

Figure 17 shows the growth of capability.  As an example of the benefit of rigorous system 

testing consider the dip in performance during system test six. The moving obstacle fusion 

algorithm and an updated velocity controller were integrated for the first time.  Despite rigorous 

component testing, the introduction of these elements reduced overall system capability.  

Through regression testing problems were identified and addressed quickly, and it is expected 

that the next system test will show a return to the previous level of performance.  As 

development continues and the overall system complexity increases, standardized regression 

tests at the system level will play an even larger role in identifying problems with components as 

they are integrated.   
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Figure 17.  Standardized system tests provide a critical monitor of the overall development health and 
allow for the rapid diagnosis of problems with newly introduced components. 

Summary  
This paper describes the approach Tartan Racing is taking to meeting the Urban Challenge and 

realizing the goal of safe, autonomous vehicles.  Our multi-modal approach partitions the urban 

driving problem into tractable behavioral modes (road driving, intersection handling and 

parking).   Motion planning employs a common trajectory generation framework for both on 

road and parking lot planning.  Perception integrates data from radar, lidar and vision to track 

vehicles and model road shape and obstacle locations.   

The results presented is a snapshot of technology under rapid development.  Significant 

improvements are ongoing in all aspects of overall system performance.  More research and 

development is occurring that could not be presented in this paper in the interest of clarity and 

space.  In particular several perception algorithms, which are still early in the development cycle, 

have not been presented. 

As of this publication, the Tartan Racing vehicles have exhibited a majority of the basic 

navigation skills required for the site visit, and the building blocks necessary to achieve the more 

challenging navigational components are assembled.  We anticipate a tremendously exciting run 

at the Urban Challenge. 
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