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Email: thomas@inf.ufes.br

R. J. Batista

Espı́rito Santo Exploration and Production Business Unit

Automation, Inspection and Maintenance Engineering
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Abstract—This paper presents vibration analysis techniques
for fault detection in rotating machines. Rolling-element bearing
defects inside a motor pump are the object of study. A dynamic
model of the faults usually found in this context is presented.

Initially a graphic simulation is used to produce the signals.
Signal processing techniques, like frequency filters, Hilbert trans-
form and spectral analysis are then used to extract features that
will later be used as a base to classify the states of the studied
process. After that real data from a centrifugal pump is submitted
to the developed methods.

I. INTRODUCTION

Detecting or even preventing failures in complex machines

usually benefits in terms of economy and security [18]. Con-

tinuous technological development contributes to the increase

of the lifetime of a rolling bearing. However, defects can

occur due to the great number of critical processes where

bearings are employed. The precocious diagnosis of possible

faults constitutes an important activity to prevent more serious

damages.

Predictive maintenance [16], from the analysis of vibration

signals produced by the process, allows to monitor and make

conclusions about the operational state of the machine, in

addition to that allows taking appropriate measures to extend

the time of use, and to minimize costs resultant from the

machine’s downtime.

The objective of the signal analysis is the discovery of dis-

criminative features that allow the identification of problems

in their early stages. In particular, bearing problems manifest

in alterations of the machine’s vibration patterns.

Especially for defects in rolling-element bearings envelope

detection [9] is an indicated technique because the mechanic

defects in components of the bearing manifest themselves in

periodic beatings, overlapping the low frequency vibrations

of the entire equipment, for instance caused by unbalance of

the pump’s rotor. The Hilbert transform, [1], [20] plays an

important role in the sequence of steps of the analysis. The

main idea is the separation of the defect frequency and the

natural frequency of the beating by demodulation.

II. VIBRATION ANALYSIS IN ROTATING MACHINES

Motor pumps, due to the rotating nature of their internal

pieces, produce vibrations. Accelerometers strategically placed

in points next to bearings and motors allows the position,

velocity or acceleration of the machine over time to be

measured, thus generating a discrete signal of the vibration

level. Fig. 1 shows a typical positioning configuration of

accelerometers on the equipment. In general, the orientations

of the sensors follow the three main axes of the machine, i.e.

vertical, horizontal and axial.

Fig. 1. Motor pump with extended coupling between motor and pump.
The accelerometers are placed along the main directions to capture specific
vibrations of the main axes. (H=horizontal, A=axial, V=vertical)

A. Fault Models in Bearings

The structure of a rolling bearing allows to establish a

model of possible faults. The bearings, when defective, present

characteristic frequencies depending on the localization of

the defect [13], [10], [14]. Defects in rolling bearings can

be foreseen by the analysis of vibrations, detecting spectral

components with the frequencies (and their harmonics) typical

for the fault.

There are five characteristic frequencies at which faults can

occur. They are the shaft rotational frequency FS, fundamental

cage frequency FC, ball pass inner raceway frequency FBPI,

ball pass outer raceway frequency FBPO and the ball spin

frequency FB.

For the ball bearings with angular contact with the cage,

the outer ring is static and the inner ring rotates at the shaft

speed. The characteristic fault frequencies can be calculated

by the following equations:
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where Db is the ball diameter, θ is the contact angle between

the balls and the cage, Dc is the cage diameter and Nb is

the number of balls in the bearing. These equations consider

that the rolling elements do not slide, but roll over the race’s

surfaces.

For bearings where the balls do not have an angular contact

with the cage, when there are defects in a rolling element,

the fault vibration frequency appears as twice the frequency

FB, because the defect will collide on both races at each ball

rotation.

These frequencies stem, in fact, from defects. They will

only be present in the vibration spectrum when the bearings

are really defective or, at least, when their components are

subject to excessive tensions and deformations that can induce

a fault.

Fig. 2 illustrates a basic model of a bearing with the rolling

elements, the inner and outer raceways and the cage.
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External
raceway

Internal raceway
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Fig. 2. Sectional view of a bearing model [10].

B. Spectral Composition

In the presence of bearing defects there are vibrations that

overlap the normal functioning signals. Besides that, faults

from other problems of the machinery can also occur. An

example are the lower frequency vibrations which typically

occur in case of unbalance of the rotating parts of the pump.

Whenever a collision between a defect and some bearing

element happens, a short duration pulse is produced. This

pulse excites the natural frequency of the bearing, resulting

in an increase of the vibrational energy. We consider three

basic frequency bands that are relevant for the defect analysis:

the lower unbalance frequencies, the higher frequencies of the

mechanic shocks of the balls with the cage (resonance) and

one or more of the frequencies defined in the equations (1) to

(4).

Fig. 3 shows some of the involved frequencies.
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Fig. 3. Time domain signal with low frequency unbalance, resonance of the
bearing collisions and intervals between the defects.

III. ENVELOPE DETECTION

The defect detection based on the frequencies of eqs. (1) to

(4) follows a set of consecutive stages usually denominated

as envelope detection [2], [6], [9]. The envelope detection

is an important signal processing technique that helps in the

identification of the bearing defects, extracting characteristic

frequencies from the vibration signal of the defective bearing.

The objective is the isolation of these frequencies and their

harmonics, previously demodulated by the Hilbert transform.

With this analysis it is possible to identify not only the

occurrence of faults in bearings, but also identify possible

sources, like faults in the inner and outer race, or in the rolling

elements.

A. Spectral Filtering

The first step in amplitude demodulation is signal filtering

with a band-pass filter to eliminate the frequencies associated

with low frequencies defects (for instance unbalance and

misalignment) and eliminating noise.

The frequency band of interest is extracted from the original

signal using a FIR filter, [8], [6], [17], [11] in the time domain.

The response to the impulse b(n), i.e. the coefficients, of

the used band-pass FIR filter, with ideal response HPB(eiω),
is given by [11]

b(n) =
1

2π

∫ π

−π

HPBeinωdω

=
1

πn
[sin(nωc2) − sin(nωc1)] . (5)

b(n) =






(ωc2 − ωc1)/π, n = 0

1

πn
[sin(nωc2) − sin(nωc1)] , |n| > 0

(6)



where the frequencies ωc1 and ωc2 are the normalized cut-off

frequencies.

An impulse response of finite length is obtained by a

truncation, b′(n) = b(n) · w(n). The effects of the Gibbs

phenomenon, [8], [17], caused by the abrupt discontinuity

(or truncation) of the impulse response in the time domain,

are reduced by the utilization of a window, w(n), with small

lateral lobes like the Hamming window.

A delay in b′(n), in order to obtain a causal filter, is

introduced by left shifting the origin and re-indexing the

coefficients, that is, b′(n) = b′(n − M); n = 0, 1, . . . , 2M.

The spectral filtering in the time domain is concluded by a

convolution of the input signal x(n) with the coefficients, i.e.,

y(n) =
∑

N

k=0
b′(k) ·x(n−k), where N is the filter order and

y(n) is the filtered signal.

B. Hilbert Transform

The vibration signals of interest have repetitive high fre-

quency manifestations as a consequence of the excitation of

high frequency resonances in regular intervals (see Fig. 3).

These free vibrations generated by the bearing defects are

modulated in amplitude by the sequence of repetitive impacts

and by the damping effect.

The direct frequency analysis of the signals does not pro-

vides much information [6], because in the high frequency

bands there is noise and other defects mixed with the char-

acteristic frequencies of bearing faults. These repeating fre-

quencies are, however, easily measured in the signal envelope.

The envelope detection method (or amplitude demodulation)

provides an important and effective approximation to analyze

fault signals in high frequency vibrations.

The signal envelope can be calculated by the Hilbert trans-

form [1], [20]. Given a signal h(t) in the time domain, the

Hilbert transform is the convolution of h(t) with the signal
1

πt
, producing a new signal in the time domain.
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1
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Considering the spectrum of h(t) and h̃(t), knowing that the

convolution in the time domain is equivalent to a multiplication

in the frequency domain, and that sgn(ω) is the sign function,

we get

F{h̃(t)} = −i · sgn(ω) · F{h(t)}, (8)

i.e. the Hilbert transform causes a shift of +90◦ for the positive

frequencies and of −90◦ for the negative frequencies, leaving

the amplitudes unmodified.

The analytic signal, ha(t), a complex signal composed

by the original signal h(t) and its Hilbert transform h̃(t) in

quadrature, defined as ha(t) := h(t) + ih̃(t), has a spectrum

with positive frequencies only.

It is possible to obtain the analytic signal from the equation

(8)

F{h(t) + ih̃(t)} = F{h(t)} · (1 + sgn(ω)) (9)

F{ha(t)} = F{h(t)} ·


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1, ω = 0

0, ω < 0

(10)

Considering the signal (original and analytic) as a modula-

tion by the (complex) signal eiωct of a carrier frequency of

angular frequency ωc, the magnitude of the Fourier transform

of the analytic signal |F{ha(t)}| is a (scaled) version of

the magnitude of the Fourier transform of the demodulated

original signal |F{h(t)}(ω − ωc)|, i.e. relocated to the low

frequencies ω − ωc. In this way it is possible to isolate the

bearing defects.

In the discrete form, utilizing the DFT (discrete Fourier

transform), the equation (10) can be represented in the fol-

lowing way, [20] and [12]

DFT{ha[k]} = DFT{h[k]} ·





2, k = 1, . . . , N/2 − 1

1, k = 0, N/2

0, k = N/2, . . . , N − 1
(11)

The inverse transform of the equation (11) is the analytic

signal ha[k], which imaginary part is the Hilbert transform,

by which it is possible to extract the envelope of the signal,

i.e., the magnitude of ha[k]

E [k] = ‖ha[k]‖ =

√
h2[k] + h̃2[k] (12)

The analysis steps for the calculus of the bearing defect

frequencies spectrum are then resumed: 1o) Low frequency

filtering to eliminate the influence of slow vibrations, 2o)

Calculus of the analytic signal ha(t) of the original signal

h(t), 3o) Fourier transform of the analytic signal, 4o) Analysis

of the magnitude of the spectrum.

After the calculus of the spectrum, with the knowledge of

the bearing properties, a classification module is responsible

for the diagnosis of the possible fault.

IV. SIMULATION

A dynamic simulator with a graphical interface for synthetic

signal generation was developed. Fig. 4 shows the graphical

model of the simulator’s bearing, without the cage represen-

tation.

Fig. 4. Graphical model of the simulator’s bearing.



The simulator was implemented in C, with the OpenGL

graphical interface library and Gnuplot for graphics generation

in real time. The objective of the simulator is to generate

signals of defects in bearings to facilitate the learning and

training of the discussed signal processing techniques. With

the simulated signals, all the techniques presented here can be

applied to extract necessary information in order to diagnose

if the bearing is defective, which is the possible defect and

what is the level of degradation.

It is possible to simulate defects in the inner and outer

raceways, fissures in the rolling elements and unbalance of the

motor pump. Gaussian noise, representing random vibrations

from other sources of the motor pump is added to the synthetic

signal granting a more realistic character to the data.

The resulting signal is composed of two sources: a low

frequency vibration, emulating the unbalance of the rotating

parts of the motor pump and a damped harmonic oscillator,

emulating the mechanic shock between the dynamic and static

parts inside the bearing, for instance, caused by the passage

of a ball over a fissure in a raceway.

A. Damped Oscillations with one Degree of Freedom

If the source of a vibration is detectable by the accelerome-

ters, we are interested in the displacement x(t), caused by the

beatings of a ball in an irregularity inside the bearing. Consider

an isolated system. Adding to the balance of force (Hooke’s

law) F = mẍ = −kx of a simple harmonic oscillation, a

damping proportional to the velocity, we get

mẍ = −kx − cẋ (13)

where m is the dislocated mass, k is the spring constant and c
is the damping constant. With the initial conditions x(t = 0) =
x0, ẋ(t = 0) = v0 and supposing a underdamped system, c2−
4mk < 0, the solution of the second-order ordinary differential

equation (13) gives us the damped vibration.

x(t) = Ae−λω0t cos(ωt − φ0) (14)

where A is the maximum amplitude of the oscillation, λ = c

2m

the damping coefficient, ω0 =
√

k

m
the natural frequency of

the oscillator, ω =
√

ω2
0
− λ2 the frequency of the damped

system and φ0 the phase of the oscillation.

V. RESULTS

To prove the previously presented fault detection method,

the results of two tests are shown: one with artificial data from

the simulator and another with real data from a submersible

motor pump. We will show that the use of pattern recognition

techniques avoids heuristics for filtering the relevant informa-

tion out of the spectrum of the signal envelope. That means

that there is no necessity to explicitly define a frequency band

where we expect the faults to manifest themselves. Information

filtering methods are used, especially feature selection.

A. Synthetic Data

With the simulation being executed with parameters from a

real bearing, it was possible to generate a set of signals for

the corroboration of the proposed methods. The simulator was

configured to rotate at 1800 RPM (FS = 30Hz), containing 12

balls, with a diameter of 38.1 mm each, in a cage of 165 mm of

diameter and considering the contact angle equal to 37◦. The

resonance frequency of the rolling elements was adjusted to

4 KHz and 1024 points were sampled at a sampling frequency

of 21 KHz.

Fig. 5 illustrates the signal generated by the simulator

according to the aforementioned configuration. For better

visualization no noise was included or any other fault source

was activated, like unbalance.
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Fig. 5. Simulated original signal in the time domain. No noise or other faults
are active, only resonance.

With the data utilized to adjust the simulator, the values of

the characteristic fault frequencies of the equations (1) to (4)

are: FC = 12.24 Hz, FB = 62.93 Hz, FBPO = 146.89 Hz e

FBPI = 213.11 Hz. As these fault frequencies appear when the

bearing is defective, it is possible to identify the source of the

bearing problem by observing the spectrum of the envelope

signal.

The first step of the investigation is spectral filtering. The

filtered frequency band was [2800 Hz, 5100 Hz], because this

region contains the resonance of the material.

The step following the filtering is envelope detection, allow-

ing the identification of the origin of the fault. In Fig. 6 the

peaks in the frequency 144.1 Hz and its harmonics are made

evident, enabling the detection of a fault in the outer raceway.

Next we postulate that the use of pattern recognition

techniques [19], [4], [3], especially feature selection, allows

an automatic discrimination of the bearing condition classes,

i.e. the normal state and the various fault types. In general,

measures of specific bands and its derived measures are

defined to compose the set of features that are the base of

the classification [7], [5], [22].

On the contrary to this explicit definition of the useful

features, we apply automatic information filtering techniques

to discover the most useful of the features, in this case of
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Fig. 6. Envelope spectrum emphasizing the fault in the outer raceway of the
bearing (FBPO = 146.89 Hz)

the signal envelope frequencies. We consider therefore the

complete envelope spectrum, eq. (12), as the initial feature

vector, in this case of dimension d = 512. For each of the

5 classes (without fault and the 4 faults of the equations

(1) to (4)) 50 samples were generated. Gaussian noise with

variance σ2 = 0.04 was added to an original synthetic signal

in the time domain (1024 samples). For example, for the “inner

raceway” fault class, the maximum absolute value is 0.62167,

the absolute average value is 0.18079 and the median of the

absolute value is 0.15269. Thus, the signal-to-noise ratio is

quite low and makes it difficult to filter out the discriminative

information.

The technique of feature selection [19] [3] has two main

advantages. First, it reduces the dimension of the feature

vector, facilitating the subsequent classification. For example,

training a multi-layer perceptron with 512 entries is much

more complex than using only the 20 best features.

In this work we use the Sequential Forward Selection strat-

egy [19] because it is a good trade-off between computational

cost and search space complexity. Only 20 of the original 512

features were selected, representing a complexity reduction of

96%. As the selection criterion we used inter-class Euclidean

distance. The sequence of selected frequencies was: 0 Hz,

123.047 Hz, 287.109 Hz, 840.82 Hz, 2317.38 Hz, 1066.41 Hz,

758.789 Hz, 143.555 Hz, 307.617 Hz, 451.172 Hz, 471.68 Hz,

41.0156 Hz, 225.586 Hz, 594.727 Hz, 922.852 Hz, 1004.88

Hz, 205.078 Hz, 328.125 Hz, 574.219 Hz, 1025.39 Hz. In this

sequence one can encounter some of the fault frequencies and

their harmonics which evidences the discriminative importance

of the characteristic fault frequencies.

An extremely useful tool for high-dimensional data vi-

sualizing is the Sammon Plot [15], that in two or three

dimensions reproduces the mutual Euclidean distance between

each example (here 250) in the original dimension (the 20 best

features determined by the feature selection). Over the usually

employed two-dimensional visualization by the first two prin-

cipal components of the Principal Component Analysis (PCA)

[19], the Sammon plot has the advantage that it preserves the

TABLE I
ESTIMATED ERROR RATE USING THE “LEAVE-ONE-OUT” ESTIMATION

FOR VARIOUS TYPES OF CLASSIFIERS

Classifier Estimated error rate

Linear Machine 1.45%

Quadratic Gaussian 3.50%

1-Nearest-Neighbor 2.50%

Multi-Layer Perceptron 1.00%

nonlinear relationships among the data points and that it does

not cut off non-principal components. Fig. 7 clearly illustrates

the separability of the classes, i.e, the feature model potential

to diagnose the health of the bearing.
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Fig. 7. Sammon Plot for the signal of the envelope of original dimension
20, i.e. after feature selection, mapped to 2-D

An empirical comparison with various classifier models [19]

was made to confirm the separability of the data. To estimate

the error rate, the “Leave-One-Out” method was used. Table I

shows the result of the performance estimates experiences of

various classifiers: Linear Machine, Bayes with multivariate

Gaussian distribution, 1-Nearest-Neighbor and Single-Hidden-

Layer Perceptron.

B. Real Data

The second test was conducted with real data from a

submersible centrifugal motor pump, produced by Landustrie,

The Netherlands [21]. The rolling-element bearing used in the

test was the SKF6305, with fundamental shaft frequency, FS

equal to 25 Hz. The values of the frequencies originated from

potential damages are: FC = 9.2 Hz, FB = 44 Hz, FBPO = 64.4

Hz and FBPI = 111 Hz. A total of 16384 points was measured

with a sampling frequency of 51.2 KHz. Fig. 8 illustrates the

signal in the time domain.

Fig. 9 shows the envelope spectrum of the signal filtered

from 4 KHz to 8 KHz. The clearly visible peaks at the 106

Hz frequency and its harmonics evidences a fault at the inner

raceway.
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Fig. 9. Envelope spectrum emphasizing the bearing defect

VI. CONCLUSION AND FUTURE WORKS

In this work we employed signal processing and pattern

recognition techniques to classify faults in bearings. The

envelope analysis provides the feature vector used in the

subsequent classification steps. On the contrary to the majority

of the works that focus on the fault detection problem, we

explore pattern recognition methods to automate the analysis

of the obtained features.

In the near future we will be able to acquire real data

from an experimental workbench (SpectraQuest MFS2004-

PK7) allowing the refinement of the developed techniques.

A study of distinct bearing models will be realized. It is also

projected to implement the fault diagnosis system in an motor

pump environment in the oil extraction industry.
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