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A Convergent Dynamic Window
Approach to Obstacle Avoidance
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Abstract—The dynamic window approach (DWA) is a
well-known navigation scheme developed by Fox et al. and
extended by Brock and Khatib. It is safe by construction, and has
been shown to perform very efficiently in experimental setups.
However, one can construct examples where the proposed scheme
fails to attain the goal configuration. What has been lacking is a
theoretical treatment of the algorithm’s convergence properties.
Here we present such a treatment by merging the ideas of the
DWA with the convergent, but less performance-oriented, scheme
suggested by Rimon and Koditschek. Viewing the DWA as a model
predictive control (MPC) method and using the control Lyapunov
function (CLF) framework of Rimon and Koditschek, we draw
inspiration from an MPC/CLF framework put forth by Primbs to
propose a version of the DWA that is tractable and convergent.

Index Terms—Lyapunov function, mobile robots, model predic-
tive control (MPC), navigation function (NF), obstacle avoidance,
receding horizon control (RHC), robot control.

I. INTRODUCTION

THE PROBLEM of robotic motion planning is a
well-studied one, see, for instance, [10]. One of the

early approaches is artificial potential fields, where the robot
is driven by the negative gradient of a sum of potentials from
different obstacles and the goal. Many of these methods suffer
from the problem of undesired local minima, i.e., positions dif-
ferent from the goal, where the robot could get stuck. The most
refined method along these lines is perhaps [4], where advanced
mathematics is applied to construct an artificial potential func-
tion without undesired local minima. Other approaches have
used ideas from fluid mechanics or electro magnetics [18], [19]
to construct functions free of local minima, but they are, in
general, computationally intensive and therefore ill-suited for
dynamic environments.

There is also a direction of research toward biologically moti-
vated, nonmodel-based methods. These include fuzzy or neural
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approaches and the behavior-based paradigm described in, e.g.,
[12]. A recent attempt to incorporate mathematical formalism
into such frameworks can be seen in [8], but they are still, in
general, hard to analyze from a convergence perspective. In clut-
tered environments, the exact shape of the robot must be taken
into account; these aspects have been investigated in [13] and
[16]. Most work, however, as well as our study, assume a cir-
cular or point-shaped robot.

We build our proposed scheme on the combination of a
model-based optimization scheme and a convergence-oriented
potential field method. A large class of model-based techniques
use optimization to choose from a set of possible trajectories
[1], [2], [14], [15]. We argue that these optimization-based
techniques can be seen as applications of a model predictive
control (MPC) approach (or, equivalently, a receding horizon
control (RHC) approach). Having made this observation, we
look at the method of exact robot navigation using artificial
potential functions, put forth by Rimon and Koditschek [4].
After constructing a continuously differentiable navigation
function (NF) (artificial potential), Rimon and Koditschek use
Lyapunov theory to prove convergence. Bounded control and
safety is shown, but the method has the drawback of almost
never using the full control authority, and furthermore, is
not suited for dynamic environments where fast response to
changes is essential. Inspired by Primbs et al. [3], we present a
way to merge the convergent Koditschek scheme with the fast
reactive dynamic window approach (DWA). This is done by
casting the two approaches in an MPC and control Lyapunov
function (CLF) framework, respectively, and combining the
two as suggested by Primbs et al. The conceptual flowchart of
this combination is depicted in Fig. 1.

Theorganizationof thispaper isas follows. InSection II,we re-
view the work of [1] and [2], as well as [3]. Then, we explain our
proposed scheme in detail in Section III. In Section IV, we dis-
cuss the theoretical properties of our approach, and in Section V,
we give a simulation example. The conclusions can be found in
Section VI. This paper builds on our earlier work [5], [6].

II. PREVIOUS WORK USED IN THIS PAPER

In this section, we discuss the ideas of Fig. 1 in some detail.

A. The DWA and Its Extension

The DWA [1] is an obstacle-avoidance method that takes into
account the dynamic and kinematic constraints of a mobile robot
(many of the vector field and vector field histogram approaches
do not). The basic scheme involves finding the admissible con-
trols, those that allow the robot to stop before hitting an obstacle
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Fig. 1. Idea of the proposed approach can be seen as combining elements
from the original DWA with a construction guaranteeing convergence, proposed
by Rimon and Koditschek. This is done with inspiration from an MPC/CLF
framework suggested by Primbs et al..

while respecting the above constraints. Then an optimization is
performed over those admissible controls to find the one that
gives the highest utility in some prescribed sense. There are
different suggestions for the utility function in [1] and [2], in-
cluding components of velocity alignment with preferred direc-
tion, large minimum clearances to obstacles, possibility to stop
at the goal point, and the norm of the resulting velocity vector
(large being good).

Brock et al. [2] extended the work in [1] by looking at holo-
nomic robots (Fox et al. considered synchro-drive ones), and
more importantly, by adding information about connectivity to
the goal. The latter was done by replacing the goal-direction
term with the negative gradient of an NF, defined as the length
of the shortest (unobstructed) path to the goal [10]. Thus, they
were able to eliminate the local minima problems present in so
many obstacle-avoidance schemes (hence, the term “Global” in
the title of [2]).

The experimental results reported in [1] and [2] are excellent,
showing consistent safe performance at speeds up to 1.0 m/s with
a Nomadic Technologies XR4000 robot [2]. The results demon-
strateanalgorithmthat issafebyconstruction(inthesensethat the
robot never hits obstacles), and displays high efficiency in exten-
sive experimental tests.But although Brock and Khatib argue that
the use ofan NF makes theapproach“Global,” it is never formally
shown. In fact, examples can be constructed where the robot en-
ters a limit cycle, never reaching the goal, or actually consistently
moving away from the goal (see Section III-D).

B. Exact Robot Navigation Using Artificial Potential Fields

One of the main contributions of [4] is the clever construc-
tion of a special artificial potential. This potential has no local
minima except the global minimum at the goal. Furthermore, it
is continuously differentiable and attains its maximum value at
all the obstacle boundaries.

Combining such a potential , where is position,
with a kinetic energy term, one can construct a CLF as

TABLE I
COMPLEMENTARY PROPERTIES OF THE TWO APPROACHES

The dynamics and the control ,
where is a dissipative force, yields and stability in
the Lyapunov sense (see the Appendix for definitions of stability
and Lyapunov function).

The controls are bounded, since is continuous on a
compact set. Further, the fact that and
at the obstacle boundaries guarantees against collisions if the
initial velocity is small enough. The construction is, however,
only valid in a priori known “generalized sphere worlds” con-
taining obstacles of specific categories. To adjust the scheme to
a specific robot requires a scaling of NF to make the maximal

smaller than the robot control bound. This, in turn, will
make the vast majority of prescribed control signals far below
the bound, resulting in very slow progress toward the goal.

We draw inspiration from the work in [4]; however, we relax
the constraints on from continuous to piecewise-contin-
uous and remove the requirement that at the
boundaries. By doing this, we hope to gain computational ef-
ficiency in calculating (and recalculating in case of new infor-
mation) the NF, and also to allow quite general obstacle shapes.
Furthermore, removing these constraints gives the possibility of
adding the constraint (where is a scalar con-
stant) used to enhance performance by allowing the consistent
use of control signals close to the given bound.

C. CLFs and MPC

In an interesting paper by Primbs et al. [3], the connection
between CLFs and MPC is investigated (MPC is also known
as RHC). They note the complementary properties shown in
Table I. In view of these properties, they suggest the following
framework to combine the complementary advantages of each
approach. The control law is chosen to satisfy a short-horizon
optimal control problem under constraints that ensure the exis-
tence of a CLF. The problem becomes one of finding a control

and a CLF that satisfy (1)–(4) as follows

(1)

subject to (2)

(3)

(4)

where is a cost on states, is a scalar, is the
horizon length, is a positive definite function, and is
the trajectory when applying a pointwise minimum norm con-
trol scheme (for details, see [3]). This formulation inspires our
choice of a more formal, continuous-time formulation of the
DWA, allowing us to prove convergence.
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III. A PROVEN CONVERGENT DWA

In the main parts of this paper, we will use the notation
for the state of the system. We adopt the

robot model from [2], which is basically a double integrator in the
plane , with bounds on the control ,
and on the velocity . Note that it was shown in [9] that
an off-axis point on the unicycle robot model described by

can be feedback linearized to .
For the environment, we assume that the robot’s sensors can

supply an occupancy grid map, i.e., a rectangular mesh with
each block being marked as either free or occupied, over the
immediate surroundings. Here, the size of the robot must be
taken into account, and additional safety margins, due to, e.g.,
localization errors, can be added. For example, if localization
errors are bounded, the obstacle regions can be expanded by the
corresponding amount, so that performance of the algorithm de-
scribed below will still be guaranteed. A position marked as free
means that the robot does not intersect any obstacles when occu-
pying that position. Thus, a map can be incrementally built as the
robot moves around. We assume, as did Brock and Khatib, that
the simultaneous localization and mapping (SLAM) problem
(see, e.g., [21]) is solved for us.

In cases where we are given a probabilistic occupancy grid,
a heuristic weighting in the utility function (10) is conceivable.
Other methods use a graph with weighted edge costs, reflecting
ease of traversal. Such ideas are, however, not applicable to this
scheme, due to the nature of the proof of Lemma 3.1.

A. Navigation Function

In our setting, the navigation function , [2], [4], [10] ap-
proximately maps every free space position to the length of the
shortest collision-free path going from that position to the goal
point. Note that the details of our version are slightly different
from both [2] and [4], since the former is only piecewise-con-
stant, while the latter has to be at least . To be more precise,
we make the following definition.

Definition 3.1 (NF): By an NF, we mean a continuous func-
tion defined on the connected part of the obstacle-free space

, containing the goal point and mapping to the real numbers.
An NF has only one local minimum, which is also the global
minimum. The set of local maxima is of measure zero. is
piecewise-continuous, and the projection of the left and right
limits along the discontinuity edges satisfy

, where is the direction of the edge and
is the gradient on each side of it.

Before investigating how to construct such a function in de-
tail, we note that it is shown in [2] how to deal with the case
when the robot at first only knows its immediate surroundings

Fig. 2. Graph discretization and computed shortest-path distances. Shaded
squares correspond to an obstacle.

by use of its sensors. The idea is to assume free space at the un-
known positions, and then recalculate the NF when sensor data
showing the opposite arrives. In this way, the robot guesses good
paths and updates them when new information arrives. The in-
formation is immediately taken into account in the optimization
[see (10)], thus avoiding collisions. The less urgent recalcula-
tion of the NF is then done. These updates are made at a time
scale much slower than the actual motion control, so in our con-
siderations below, we assume the map to be static. Brock and
Khatib [2] used the gradient of the NF as the desired heading,
instead of using just the goal direction, as Fox did [1].

To compute the NF, we will use a technique similar to the one
suggested in [2]. There, however, the NF was piecewise-con-
stant in the grids; here, we need a local-minima-free contin-
uous function defined on all free space, making things somewhat
more complicated. The basic idea is to solve the shortest-path
problem in a graph discretization, and then make a careful con-
tinuous interpolation for the positions in between the discretiza-
tion points. An example of the discretization can be seen in
Fig. 2. We note that while the grid is four-directional, the re-
sulting robot velocities are not constrained to these directions;
indeed, the robot will often descend the gradient of the NF by
traversing the grids diagonally.

Lemma 3.1 (Construction of NF): An NF can be created by
the following procedure.

1) Make a graph out of the rectangular mesh of the obstacle
grid map, with vertices at the corners of each square and
edges along the square edges. Remove vertices and edges
that are in the interior of obstacles.

2) One of the vertices is chosen as goal point.
3) Solve the shortest-path problem in the graph (can be done

with polynomial time algorithms [11]). Mark each vertex
with the corresponding path length, and let this length be
the value of the NF at the vertex.

4) Divide the squares into triangles by drawing a diagonal
through the corner with the highest NF value (this is
shown to be unique later).

5) In the interior of each resulting triangle, let be a
linear interpolation between NF at the three vertices, i.e.,
let the value of be a plane intersecting the three
vertices.
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Fig. 3. Two possible cases, unique lowest NF(x) (left, as in the square
northwest of the goal point in Fig. 2) and two equal (right, as in the square
northeast of the obstacle in Fig. 2). The arrows indicate �rNF.

Proof: We begin by showing that there are no local
minima on the graph vertices and edges. Note that for a given
pair of vertices , if one path between and has even
(odd) length (in multiples of the edge length ), so has any other
path. Therefore, two neighbors cannot have the same NF value.
Since on the edges is a linear interpolation between
the value on the vertices, the edges have no local minima.
Furthermore, from every vertex, there is a shortest path to goal,
and along this path, NF decreases monotonically. Thus, there
can be no local minimum vertex, except the goal point.

Now we look at the values in the interior of the squares. Given
a square, look at the corner of lowest value, which may or may
not be unique. If it is unique and of value , then the two adjacent
corners must have value , where is the side length, and the
opposite corner must have , since no adjacent corners have
the same value (see Fig. 3, left). The diagonal is from to ,
and in this case, the two triangles will actually form an inclined
plane, which obviously has no interior local minimum.

If the lowest value is not unique, the opposite corner must
have the same value and the two adjacent ones, (see Fig. 3,
right). The diagonal is between the two corners (unique as
stated in the construction), and this diagonal composes a ridge
of local maxima. There are, however, no local minima.

Thus, we have seen that there is only one local minimum, the
goal point. There might be local maxima on some diagonals, as
in Fig. 3 (right), but they are isolated lines, and thus, of mea-
sure zero. Finally, since NF is composed of triangles glued to-
gether, the projection along the edges fulfills

as above.
With an NF at our disposal, we are ready to look at the actual

choice of control.

B. General Control Scheme

The basic idea for the convergence proof is the same as in
[4]. First, we write the problem as a conservative system with
an artificial potential, and then we introduce a dissipative control
term. This dissipative control term is the sum of a turning force
(gyroscopic term) and a braking force (strictly dissipative term).
Chang and Marsden also identify a gyroscopic-plus-dissipative
control term for obstacle avoidance [20]. In the conservative
system, we choose the artificial potential to be ,
where is a positive constant that must be chosen smaller than
the control bound . Otherwise, the set , defined later,
will be empty, as seen in Fig. 4. The CLF is

(5)

Fig. 4. Control sets C and C .

where is the NF as explained above. Incorporating the
upper bounds on the control magnitude, we define the dissipa-
tive control set as follows.

Definition 3.2 (Dissipative Controls, ):

if

for some given . We write .
A typical shape of the set is the shaded regions

in Fig. 4, where (the nine dots) is a discretized (finite)
subset of . Note that , since

, (the directional derivative along each axis
of the grid is equal to one, the gradient direction is diagonal
to the grid, and the magnitude is , see Fig. 3). Thus

lies on a circle of radius . The outer circle of radius
bounds the control set.

Now the problem is to make sure the robot does not run into
obstacles. In the standard DWA, this is taken care of by choosing
among admissible, i.e., not colliding, controls in an optimiza-
tion. Here we shall do the same.

A general formulation of the combined CLF/MPC scheme
now looks like this

(6)

subject to (7)

collision free (8)

(9)

where is the horizon length of the MPC. Here (7) gives sta-
bility in the Lyapunov sense. Safety is guaranteed by (8) and
(9), i.e., a planned collision-free trajectory ending with the robot
standing still. This corresponds to the policy of driving a car
slow enough so that you can always stop in the visible part of
the road. This is perhaps somewhat conservative on a highway,
but sensible on a small forest road where fallen trees might block
your way.

Note that the above formulation can, in principle, be applied
to enhance the performance of any approach with an artificial
potential having a well-behaved gradient, e.g., the original NF
suggested in [4] or a version of [18] and [19]. We believe that the
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NF suggested above is a choice that yields high robot velocities
and good computational efficiency.

The optimal control problem of the MPC above can be com-
putationally intensive, as seen in related approaches, such as [7].
Therefore, we devote the next section to showing how a very
coarse discretization can still yield quite good performance. In
Section IV, we give detailed proofs of the theoretical properties
of the proposed method.

C. Discretized Control Scheme

To end up with a computationally tractable version of the
MPC, we discretize the set of dissipative controls into two
sets with piecewise-constant controls, relative to the velocity di-
rection. The horizon length is , where is the time
over which the resulting control will be applied. After time , a
new optimization is performed. The control set is discretized
into two sets, and , corresponding to the two time inter-
vals of length and . A third set is used when starting
from a standstill, see Definition 3.3. To make the scheme pre-
cise, we formulate the following algorithm.

Algorithm 3.1 (Control Scheme): The control algorithm is
composed of the following steps, where step 3 is the main one.

1) If , choose the control pair , as given
in Definition 3.3, i.e., start out in a good direction.

2) Else, if , then set the new . If fur-
thermore, , then take the
part of the previous control pair and choose the
control pair , i.e., reset and stop safely.

3) Else, choose the optimal solution to the MPC control
problem

subject to is collision-free (10)

4) Apply the first part of the chosen control pair for time
units, then repeat from 1.

Here, is a user-defined decrease in over the time
. This timeout construction is needed to guarantee

against the hypothetical case of the robot velocity slowly
approaching zero. Then the decrease bound is not
enough to yield convergence. The control sets are defined as
follows.

Definition 3.3 (Control Sets, , , and ): Let be the
set of nine controls depicted as solid and shaded dots in Fig. 4,
left, and be the set of four controls (a subset of ) in Fig. 4,
right. Note that and are defined relative to the velocity
direction . Furthermore, let be the control directed toward
the corner of the current grid with the lowest value (if
there are more than one such corner, the one closest to the robot
is chosen) and with control magnitude such that after applying

for time , and the middle, hardest braking control of
for time , the robot stops at the corner.

Intuitively, the scheme can be visualized as a downhill skier
on the slopes of the NF. Then the set of controls in
correspond to using all the acceleration provided by the slope
while possibly turning (gyroscopic forces). The set ,
on the other hand, corresponds to maximal braking maneuvers

Fig. 5. An obstacle, level curves of the NF, and parts of a trajectory, as well as
all the considered options.

(dissipative forces). The coarseness of the discretization, i.e., the
cardinality of the sets and , can be varied with respect to
the amount of computational resources available.

As seen in Fig. 4, choosing close to the upper bound
makes the set cover a very small area, while choosing small
limits the maximal forward acceleration available to the vehicle.

Note that , since the acceleration is toward the corner
closest to goal. We further assume the grids to be small enough
to be traversable by the control in time units.
To make the current grid unique, positions on the boundary of
grids are assigned to belong to one of the adjacent grids.

The interval is divided into two parts, and
, where is the time step of the MPC control loop.

In the first part , a control from , the set of controls in
Fig. 4, left, is chosen. In the second part , a control
from , the set of controls in Fig. 4, right, is chosen. Note that
the controls in the sets above are constant with respect to the
direction of the robot velocity, . consists of four controls
(the dots in Fig. 4, right) all reducing the speed of the robot.
consists of five controls on the border of the dissipative region
(shaded area) and the four controls (the shaded dots). Thus,
the whole set consists of control
sequences.

In Fig. 5, we see parts of an executed trajectory together with
all the options evaluated in the optimization. An obstacle, as
well as the level curves of the NF, are also depicted.

It can be seen that in the first time step, the leftmost control of
is chosen, and in the second time step, the rightmost control

is chosen. Since is the length of the time step, it is only the
part of that is actually executed.

The purpose of the part is to guarantee safety. The time
should be chosen long enough for the robot to stop

at (or before) time (since all the controls are braking).
The optimization is done with the constraint that the resulting
trajectory does not hit any obstacles, hence, the choice of the
rightmost control the second time. The fact that the previously
chosen control is an option in makes the last part of the
(safe) previously chosen control sequence an option in the next
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optimization. As a result, there is always at least one admis-
sible (and therefore, safe) control sequence available. As stated
above, this is similar to always making sure you can stop in the
visible part of the road when driving a car.

One might argue that discretization and exhaustive search is
an inelegant solution. But we chose it for two reasons. The utility
function varies rather slowly over the admissible
set of controls, and this set, in turn, can be very complex, e.g.,
unconnected if there are traversable paths to the right and to
the left, but the road straight ahead is blocked by an obstacle.
The constraints are also far from being a differentiable function
inequality. Due to these facts, a steepest-decent approach will
not do well.

D. Example of Convergence Failure of Previous Approach

The utility function of [2] that is to be maximized is

goal

where , , are the current position, desired velocity, and
acceleration, respectively. , , , and are scalar weights,

increases if the velocity is aligned with the NF gra-
dient, increases with velocity (if far from goal), goal
is binary, 1 if the trajectory will pass through the goal point, and

is the decrease in NF value.
Consider a “T”-shaped, very narrow corridor, with the robot

initially in the top left end and the goal defined in the bottom
end. This will leave the robot accelerating maximally toward
the right. If the corridor is long and narrow enough, the speed
is going to be too great to allow a right turn at the intersection.
Thus, the robot will continue away from the goal. In particular,
when the corridor is very narrow and turning is not an option,
the robot must either brake or not. If the weights are such that
the velocity term outweighs the term, the robot
will just keep on going. Otherwise, it will brake maximally. If,
however, the acceleration is as powerful as the retardation, the
robot will oscillate back and forth in the upper part of the “T,”
and never be able to make the sharp turn into the goal part of it.
A similar counterexample was independently presented in [7].
Note that the Lyapunov property of (11) removes these kinds of
problems in the proposed approach.

IV. PROOF OF CONVERGENCE AND SAFETY

Before we formulate the main theorem of this paper we need
a lemma.

Lemma 4.1 (CLF): The function

is a CLF, and any control satisfies the following inequality:

(11)

Proof: The candidate CLF is
, which is clearly positive definite with a global

minimum at . Differentiating with respect to
time gives

, by the constraints on . The NF

is, however, not differentiable everywhere. Along the triangle
edges of NF, there are, in general, two different (left and right)
limits of the gradient. The projections along the edge is the
same, , making the inequality
true. Furthermore, it is this projection that is needed when
determining according to the definition of ; see Definition
3.2 and Fig. 4.

If is not parallel to an edge, the problem with undefined
in the control will only occur in one isolated time in-

stant, and thus, is not changed by whatever value we
use.

Theorem 4.1 (Finite Completion Time): Suppose the control
scheme in Algorithm 3.1 is used, and there is a traversable path
from start to goal in the occupancy grid. Then, the robot will
reach the goal position in a time bounded above by

where is the value of the CLF at the starting
position.

Proof: By Lemma 4.1, we have that . Thus,
the system is stable in the sense of Lyapunov.

After a stop, the robot starts moving toward the corner
of the current grid closest to goal, i.e., with lowest .
Then, the optimization improves on this, making the out-
come at least as good as stopping at that corner (at a stop,

). Together with the fact that
, this means that the robot will never stop in that

grid again. Thus, the number of possible grids to occupy
(which is finite) is reduced by at least one between each
pair of stops. Since NF is the path length, the number of
possible grids is bounded by . Therefore,
this is also a bound on the number of stops. The timeout
induces a stop if .
This makes the number of -sized intervals without
a stop bounded by . Combining the two,
we get

.
Remark 4.1: Note that this is an extreme worst-case analysis.

In the simulations, the robot did not stop at all before reaching
the goal position.

Theorem 4.2 (Safety): Suppose the control scheme in Algo-
rithm 3.1 is used, and the robot starts at rest in an unoccupied
position. Then, the robot will not run into an obstacle.

Proof: The proof relies on the recursive structure of
. The subset of noncolliding controls in (that we are

optimizing over) is never empty, since we can always choose
the (not yet applied) part of the previous control
sequence as our new control.

V. SIMULATION EXAMPLE

To illustrate the approach, we chose a setting with three large
obstacles in a 9 9 m area, as seen in Fig. 6. We used parame-
ters for the Nomadic Technologies XR4000 robot obtained from
[2], m/s , m/s. We fur-
thermore set the parameters as follows: s, s,
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Fig. 6. Obstacles and robot trajectory.

Fig. 7. Closeup of parts of the trajectory including all the evaluated options of
the MPC. The robot slows down in two places, (6.5,7.2) and (5.5,5.5), in order
not to collide.

. The resulting robot trajectory and the level curves
of the NF are also depicted in the figure. Note the absence of
local minima as guaranteed by the construction in Lemma 3.1.
In the beginning and the end of the trajectory, it can be seen how
the MPC minimization in (10) favors going perpendicular to the
level curves.

In Fig. 7, parts of the trajectory as well as the MPC options are
shown. The robot slows down in two places, as can be seen in
Fig. 8. These are located at (6.5,7.2) and (5.5,5.5), respectively.
In the second instance, all the nonbraking controls make the
robot collide. The sharp-braking right turn, the part of the
previous choice, is, however, safe and therefore applied. At the
first instance, (6.5,7.2), the nonbraking right turn is safe, but the
braking left turn yields a lower value (it is closer
to the goal) and is thus chosen.

To enforce the m/s bound, we impose the
additional acceleration constraint

Fig. 8. Robot velocity. Note how the speed is limited by v = 1:2 m/s and
how it decreases twice during the narrow passage.

This constraint is of the same sort as the dissipative constraint,
i.e., it can be depicted as another horizontal line above or below
the ones in Fig. 4. If the new constraint is more restrictive (lies
below the first two), the options will be placed just below
it, instead of just below the others. Thus, in Fig. 8, the robot
reaches a “steady-state” velocity close to m/s in the
open areas.

VI. CONCLUSIONS

In this paper, we have first presented the well-known DWA
to fast and safe obstacle avoidance in an unknown environment.
We then recast the approach in a continuous nonlinear control
framework suggested by [3]. With a few changes to the basic
scheme, we were able to prove convergence to the goal position.
This is significant, since the earlier scheme could be subject to
limit cycles, and even divergence.

APPENDIX

LYAPUNOV STABILITY THEORY

Lyapunov theory is a very elegant and powerful tool used in
stability analysis of nonlinear systems. We follow Sastry [22]
closely, but for the sake of clarity and conciseness, we sacrifice
some generality, e.g., time dependence.

Throughout this section, we consider a system of nonlinear
differential equations

(12)

where and . A condition to guar-
antee existence and uniqueness of solutions is further needed,
e.g., locally satisfying the Lipschitz condition

where is a fixed scalar. Points of interest in stability
analysis are the so-called stationary or equilibrium points.

Definition 6.1 (Equilibrium Point)

is said to be an equilibrium point of (12) if

We will now go on to investigate if a given equilibrium point
is stable or not.
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Definition 6.2 (Stable Equilibrium)

The equilibrium point is said to be a stable point of
(12) if, for all , there exists a such that

where is the solution of (12).

Definition 6.3 (Asymptotic Stability)

The equilibrium point is said to be an asymptotically
stable point of (12) if

1) it is stable;
2) it is attractive, i.e., there exists a such that

where is the solution of (12).
Note that 2) above does not necessarily imply 1). Before stating
the main stability result of Lyapunov theory, we need one more
definition.

Definition 6.4 (Locally Positive Definite Function)

A continuous function is called a locally
positive definite function if, for some and

and

where is continuous, strictly increasing, and
.

Theorem 6.1 (Basic Lyapunov Theorem)

Suppose we are given a system (12), an equilibrium point
, and a locally positive definite function .

1) If (locally), then is stable.
2) If is locally positive definite, then is asymptoti-

cally stable.
In both cases above, we call the function a Lyapunov func-
tion.

For further results, we refer to the textbook used here [22].
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