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Abstract

In this work we evaluate the performance of the Inexact Newton-Krylov
method to solve the nonlinear equations arising from the SUPG/PSPG sta-
bilized finite element formulation of transient incompressible fluid flows con-
sidering several forcing terms. We consider the free surface flow on a dam
break as a benchmark problem for Navier-Stokes equations. A simple back-
tracking scheme also contributes to improve convergence and to reduce com-
puter time, without compromising accuracy for all forcing terms strategies
studied in the present work.



Chapter 1

Introduction

The discretization of the incompressible Navier-Stokes equations leads us to
a system of nonlinear equations due the presence of convective terms in the
momentum equation. Newton-type schemes are often the most used strategy
to solve this system of nonlinear equations at each time step because they
can provide superlinear and even quadratic convergence rapidly from any
sufficiently good initial guess [7, 21]. The Newton-type algorithm requires
the solution of linear systems at each iteration and exact solutions can be too
expensive if the number of unknowns is large. However, the computational
effort to find exact solutions for the linearized systems may not be justified
when the nonlinear iterates are far from the solution. The use of an iterative
Krylov method to solve these linear systems is the strategy generally adopted.

When iterative Krylov methods are used to solve the linearized system
of the Newton-type scheme, the resulting methods are known as Inexact
Newton-Krylov methods (INK). They have been used to reduce the compu-
tational effort related to nonlinearities in many problems of computational
fluid dynamics, offering a compromise between the accuracy and the amount
of effort spent per iteration. The tolerance to which the linearized system is
solved, known as the forcing term, plays an instrumental role in the numerical
performance of this method. INK success depends mainly on three factors:
(i) quality of initial Newton step, (ii) robustness of Jacobian evaluation and
(iii) proper forcing term choice [21].

A naive selection criterion for the forcing term can lead the method to
successive oversolving stages. Many works have explored practical mecha-
nisms to adaptively choose the forcing term [7, 24, 10, 1, 17]. They often
set up their approaches based on the reduction in the Euclidean norm of the
nonlinear residual. The main objective is to find out what level of accuracy
is required to preserve the rapid convergence of the Newton’s method.

One of the first works about this theme is by [7]. They proposed what now

1



we call the Inexact Newton method, a slight, but very insightful and useful
variation of the Newton’s method, including a mathematical demonstration
on how a suitable sequence of the forcing term can provide a fast convergence.
An earlier forcing term is described in [24] and has been used in several works,
e.g., [26, 6, 5].

Another important consideration described by [10] and also discussed by
[21] is oversolving, that is, a choice too small of the forcing term may, at
times, increase the number of inner iterations without guaranteeing signif-
icant reduction in the residual norm. [10] introduced two choices for the
forcing term, considering oversolving control, and provided convergence re-
sults for both choices.

[1] described a new strategy to choose forcing terms, that consider the
ratio of actual reduction to predicted reduction of the residual norm. With
the new forcing terms, the Inexact Newton method is locally Q-superlinearly
convergent. [17] also described another way to choose the forcing term, that
takes into account the number of times the residual norm is evaluated. For
a set of simple experiments, the forcing term described seems to be superior
to the other choices (e.g., the ones introduced by [10]), because it is faster
in terms of number of outer iterations, number of function evaluations and
CPU time.

To enhance the robustness of these methods, they can be augmented with
a suitable globalization strategy, i.e., auxiliary procedures that increase the
convergence to the solution when good initial approximate solutions are not
available. There are two major categories of globalizations: backtracking
methods and trust-region methods [21]. Both methods have strong theoret-
ical support, that can be seen in [8, 9]. The backtracking technique usually
shortens steps as necessary to ensure adequate decrease in the residual norm
of the nonlinear system. On the other hand, the trust-region methods are
techniques where a step is ideally chosen to minimize the residual norm of a
local linear model defined from the nonlinear system within a specified ”trust
region” [25]. Many works studies globalization procedures in Newton-Krylov
methods to solve nonlinear systems arising from the solution of fully coupled
large scale CFD problems [3, 25, 32, 12].

In this work we evaluate the performance of the Inexact Newton-Krylov
scheme to solve the nonlinear equations arising from the SUPG/PSPG fi-
nite element formulation of transient incompressible fluid flows [27, 13, 14]
with the backtracking global strategy and considering several forcing terms
proposals.

The present paper is organized as follows. Section 2 presents the gov-
erning equations and the SUPG/PSPG finite element formulation. Section
3 describes the Inexact Newton-type schemes including forcing terms calcu-

2



lations, the backtracking global strategy and one illustrative simple example
in one-dimension. Three-dimensional test problems are presented in Section
4 and the paper ends with a summary of our main conclusions.
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Chapter 2

Governing Equations and

Finite Element Formulation

Given a spatial domain Ω ⊂ R3, bounded by a piecewise regular surface and a
time interval [0, tf ], the motion of an incompressible, viscous and Newtonian
fluid in this region is governed by the following equations:

ρ

(

∂u

∂t
+ u · ∇u

)

−∇ · σ = f on Ω× (0, tf ) (2.1)

∇ · u = 0 on Ω× (0, t) (2.2)

where u is the velocity field, ρ is the fluid density, f is a vector body force
acting on the fluid and σ is the stress tensor, that for Newtonian fluids is
given by

σ(p,u) = −pI+ 2µǫ(u) (2.3)

with I the identity tensor, µ the viscosity and ǫ(u) the strain rate tensor,
defined as ǫ(u) = 1

2
(∇u+∇Tu).

The Navier-Stokes system formed by Eqs. (2.1), (2.2) and (2.3) consisting
of the momentum, continuity and constitutive equations, along with appro-
priate boundary and initial conditions contains all information necessary to
model incompressible fluid flows, including turbulent effects.

Let us assume that we have some suitably defined finite-dimensional trial
solution and test function spaces for velocity and pressure, Suh , Vuh , Sh

p and
V h
p = Sh

p . The finite element formulation of Equations (2.1) and (2.2) using
SUPG and PSPG stabilizations for incompressible fluid flows can be written
(see [31]) as follows: find uh ∈ Suh and ph ∈ Vuh such that ∀wh ∈ Vuh and
∀qh ∈ V h

p
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∫

Ω

wh · ρ
(

∂uh

∂t
+ (uh · ∇)uh − f

)

dΩ +

∫

Ω

ǫ(wh):σ(ph,uh)dΩ

−
∫

Γ

wh · hdΓ +

∫

Ω

qh∇ · uhdΩ

+

nel
∑

e=1

∫

Ωe

1

ρ

(

τSUPGρu
h · ∇wh + τPSPG∇qh

)

·
[

ρ

(

∂uh

∂t
+ uh · ∇uh

)

−∇ · σ(ph,uh)− ρf

]

dΩ

+

nel
∑

e=1

∫

Ωe

τLSIC∇ ·whρ∇ · uhdΩ = 0 (2.4)

In the above equation the first four integrals on the left-hand side repre-
sent terms that appear in the Galerkin formulation of problem (2.1)–(2.3),
while the remaining integral expressions represent the additional terms which
arise in the stabilized finite element formulation. Note that the stabilization
terms are evaluated as the sum of element-wise integral expressions, where
nel is the number of elements in the mesh. The first summation corresponds
to the SUPG term and the second to the PSPG term. Stabilization prevents
spurious node-to-node oscillations in the velocity and pressure fields, respec-
tively. We have evaluated the SUPG and PSPG stabilization parameters
according to [30]. In Equation (2.4), the last summation is the least-squares
incompressibility constraint (LSIC) term, added to prevent oscillations in
high Reynolds number flows, as defined in [28]. The discretization of Equa-
tion (2.4) leads us to a nonlinear ordinary differential system of equations
that can be written as

Mu̇+Mδ(u)u̇+N(u) +Nδ(u) +Ku− (G+Gδ)p = fu

Mϕ(u)u̇+GTu+Nϕ(u) +Gϕp = fp (2.5)

where u is the vector of unknown nodal values of uh and p is the vector of
unknown nodal values of ph. The non-linear vectors Mδ(u), Mϕ(u), N(u),
Nδ(u) and Nϕ(u), the matrices M, K, G, Gδ and Gϕ emanate, respectively,
from the temporal, convective, viscous and pressure terms. The vector fu
includes boundary conditions, the vector f and stabilization terms, fp also
includes boundary conditions and stabilization terms. The subscripts δ and ϕ
identify the SUPG and PSPG contributions respectively. The discretization
in time of Equation (2.5) using the predictor multicorrector finite difference
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scheme – described by [15] – leads us to a nonlinear system of equations to
be solved at each time step that can be written as,

F(x) = 0 (2.6)

where x = (u, p) is denoted by a vector of nodal variables comprising both
nodal velocities and pressures. We consider the approximate Jacobian form
described by [27] and used in [13]. This numerically approximated Jacobian
is based on Taylor’s expansions of the nonlinear terms in Eq. (2.5), and
presents an alternative and simple way to implement the approximate tangent
matrix employed by Inexact Newton-type methods to solve the nonlinear
system (2.6).

We are also interested in solving free-surface problems using an interface
capturing method. In this kind of problem, the interface can be represented
by a scalar function which delimits the regions filled with the fluids involved.
In other words, the interface position is implicitly captured in a scalar mark-
ing function value and the interface evolution is determined by the additional
cost of solving an advection equation for the marker. In this work, we con-
sider the volume-of-fluid (VOF) method, that was developed by [19] for finite
differences and applied for finite elements for instance, in [29] and [11]. This
method is an interface capturing technique, that consider a scalar marking
function φ = φ(x, t) defined over the computational domain. In air-water
flows, this marking function can be used to define the regions occupied by
air, by water or a fraction of these two fluids, that can be used to compute the
free surface position and some physical properties of partially filled elements.
The fluid density ρ and viscosity µ, in a fixed position, can be computed as

ρ = φρa + (1− φ)ρw

µ = φµa + (1− φ)µw (2.7)

where the sub-indexes a and w stands, respectively, for air and water. The
marking function φ = φ(x, t), along the time interval [0, tf ] in an open,
bounded spatial domain Ω ⊂ R3, considering a given continuous velocity field
u = u(x, t), is governed by the following hyperbolic differential equation

∂φ

∂t
+∇ · (uφ) = 0 on Ω× [0, tf ] (2.8)

One more time, let us assume that we have a suitably standard test and
weight finite element spaces, respectively, Zh and Qh. The finite element for-
mulation of Eq. (2.8) using SUPG stabilization enriched with the nonlinear
discontinuity-capturing term can be written as follows: find φh ∈ Zh such
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that ∀ψh ∈ Qh

∫

Ω

ψh

(

∂φh

∂t
+ uh · ∇φh + φh∇ · uh

)

dΩ

+

nel
∑

e=1

∫

Ωe

τSUPGM
uh · ∇ψh

(

∂φh

∂t
+ uh · ∇φh + φh∇ · uh

)

dΩ

nel
∑

e=1

∫

Ωe

δM∇ψh · ∇φhdΩ = 0 (2.9)

where uh is given by the solution of the nonlinear system (2.6) for each
time step. The evaluation of τSUPGM

and δM stabilization terms follows the
definitions described in [4, 16]. The discretization of the Eq. (2.9) leads us
to an ordinary differential equation system in time, that is solved by the well
known implicit predictor-multicorrector algorithm [20]. Following [11], we
consider a global mass conservation algorithm to enforce that the mass of
the species involved are correctly represented as the solution evolves. The
computational effort to solve the marking function is limited to a narrow band
around the free surface by a parallel dynamic-deactivation (PDD) scheme.
Details for all formulation can be found in [11].
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Chapter 3

Inexact Newton-Krylov

Method

The nonlinear system (2.6) can be solved by Newton’s method. It is an
iterative method for nonlinear equations that approximate the function F at
a given point x = (x1, x3, . . . , xN )

t by a linear function. The Jacobian matrix
J represents the variation of the function F with respect of x. Each iteration
of the Newton’s method is given by

xk+1 = xk + sk, (3.1)

where sk is calculated by the solution of the linear system:

J(xk)sk = −F(xk). (3.2)

We may terminate the iteration when the relative nonlinear residual
‖F(xk)‖2/‖F(x0)‖2 is small, i.e. when ‖F(xk)‖2 < τNL = τres‖F(x0)‖2,
for a given tolerance τres .

When an iterative method is used to solve the system (3.2) the New-
ton’s method is known as the Inexact Newton method, that is especially well
suited for large-scale problems and have been used very successfully in many
applications. The main idea is to give up precision in name of performance.
In this context, it is introduced the concept of forcing term, expressed by ηk,
that represent the tolerance of the inner iterative linear method on nonlinear
iteration k. Several works have explored practical mechanisms to adaptively
choose the forcing term. They often set up their approaches based on the
reduction in the Euclidean norm of the nonlinear residual. In Section 3.1 we
discuss some choices for the forcing terms. We also can improve the updated
solution xk+1 on Eq. (3.1), if we consider xk+1 = xk + λsk, where λ > 0 is
a suitable parameter. Section 3.2 shows a procedure to calculate this pa-
rameter, that shortens steps as necessary to ensure adequate decrease in the
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residual norm of the nonlinear system. This strategy, known as backtracking,
is widely used [21].

3.1 Forcing terms definitions

Let η0 be a given maximum initial tolerance for the Inexact Newton method.
The well known forcing term, introduced by [24], is defined by

ηPP
k = min{η0,

( ‖F(xk)‖2
‖F(xk−1)‖2

)λ

} (3.3)

with the parameter λ = 2.
[10] introduced a new forcing term that was also described by [21]. Con-

sidering

ηAk = γ

( ‖F(xk)‖2
‖F(xk−1)‖2

)α

(3.4)

where γ and α are given parameters, the forcing term can be evaluated as

ηEW∗

k =

{

η0 k = 0

min{η0, ηAk } k > 0,
(3.5)

It may happen that ηEW∗

k is small for one or more iterations while xk is still
far from the solution. A method of safeguarding against this possibility was
suggested by [10] to avoid volatile decreases in ηEW∗

k . The idea is that if
ηEW∗

k−1 is sufficiently large we do not let ηEW∗

k decrease by much more than a
factor of ηEW∗

k−1 , that is

ηEW∗

k =











η0 k = 0,

min{η0, ηAk } k > 0, γ(ηEW∗

k−1 )α < β,

min{η0,max{ηAk , γ(ηEW∗

k−1 )α}} k > 0, γ(ηEW∗

k−1 )α > β.

(3.6)

In this work we consider two forcing terms defined by Eq. (3.6). One
described by [21]—named here as ηEWK

k — considers α = 2, γ = 0.9 and
β = 0.1, and another defined in the PETSc Library [2]—named here as

ηEWC
k — considers α =

1 +
√
5

2
, γ = 1.0 and β = 0. It is important to note

that, both parameters in EWC and EWK were previously defined as an
option by [10].

Recently, [17] defined a new choice of the forcing term that depended
on both the change in ‖F(xk)‖ and the computational cost invested during
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the kth nonlinear iteration, including inner iterations. They defined the cost
(pricek) as the number of iterations performed by the linear solver (iterk)
plus the number of function evaluations (fevalk), that is, pricek = iterk

+ fevalk. Note that both iterk and fevalk represent the total number
of inner iterations and the total number of function evaluations performed
during the first k nonlinear iterations. They also studied a way to control
the angle of the decrease on ‖F‖ as follows. If θk is the slope coefficient on
the iteration k of ‖F‖, cos(θk) is a good measure for the tradeoff between
convergence and computational costs and can be described as the ratio:

cos(θk) =
bk

√

a2k + b2k
(3.7)

where

ak = (log10‖F(xk)‖2 − log10‖F(xk−1)‖2
bk = log10(pricek − pricek−1) (3.8)

Note that θ ∈ (−π/2, π/2). If cos(θk) is close to −1 the process is doing
fine and a stricter forcing term may be tried. If cos(θk) is close to zero, the
iterations are either too costly or are getting nowhere (oversolving) and the
forcing term has to be relaxed. If cos(θk) is positive, ‖F(xk)‖ has actually
increased and a drastic action is necessary. Let us consider

ηAk =

(

1

k + 1

)ν

[cos(θk)]
2

( ‖F(xk)‖2
‖F(xk−1)‖2

)

(3.9)

where ν ∈ (1, 2] and we adopted ν = 1.1. Here, this forcing term is named
GLT and is defined by

ηGLT
k =

{

η0 k = 0

min{η0, ηAk } k > 0,
(3.10)

As described by [21], there is a chance that the final iterate will reduce
‖F(xk)‖ far beyond the desired level and that the cost of the solution of the
linear equation for the last step will be higher than is really needed. This
oversolving in the final step can be controlled by comparing the norm of the
current nonlinear residual to the nonlinear norm at which the iteration would
terminate (τNL) and bounding η∗k by a constant multiple of τNL/‖F(xk)‖, that
is

η∗k = min{η0,max{η∗k, ρ τNL/‖F(xk)‖2}} (3.11)
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We consider in our experiments ρ = 0.5 and the super index ∗ can be PP ,
EWK, EWC and GLT . In this work, we use those four schemes for choosing
adaptively tolerances for the inner iterative method in each Inexact Newton
iteration.

3.2 The Backtracking Strategy

The backtracking strategy idea is quite simple and can be defined as follows.
Given a descent direction sk, we take a step in that direction that yields
acceptable xk+1, that is:

(i) calculate a descent direction sk;

(ii) set xk+1 = xk +λsk for some λ > 0 that makes xk+1 an acceptable next
iterate.

The backtracking strategy is also referred as a line search strategy, that is, a
procedure to choose λ in (ii). Until the mid 1960s the prevailing belief was
that λ should be chosen to solve the one-dimensional minimization problem
accurately. After that, careful computational tests has led to a complete
turnaround [8]. In this work we evaluate the performance of the Inexact
Newton-Krylov scheme with backtracking as in [21] to solve the nonlinear
equations (2.6). We employ the Armijo rule, that proposes to apply only
enough reduction, such that, the following condition is satisfied:

‖F(xk)‖2 < (1− αλ)‖F(xk−1)‖2 (3.12)

where α ∈ (0, 1). Here we adopted α = 10−4 according to [21]. The parame-
ter λ is obtained in order to produced a reduction such that σ0λold ≤ λnew ≤
σ1λold, where 0 < σ0 < σ1 < 1.
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Algorithm 1: Inexact Newton-Krylov Backtracking Method - INKB

Set η0;1

k = 0;2

τNL = τres‖F(xk)‖2;3

while ‖F(xk)‖2 > τNL do4

Compute J(xk);5

Solve J(xk)s = −F(x) by a Krylov method with tolerance ηk ;6

Set λ1 = 1;7

Compute xk+1 = xk + λ1s;8

i = 0;9

xt = xk+1;10

while ‖F(xt)‖2 > (1− αλi)‖F(xk−1)‖2 and i ≤ nbt do11

Choose λi+1;12

Update xt = xk + λi+1s;13

i = i+ 1;14

endw15

if i < nbt then16

Update xk+1 = xt;17

else18

backtracking loop rejected ;19

endif20

k = k + 1;21

Select ηk;22

endw23

Algorithm 1 shows the Inexact Newton backtracking algorithm imple-
mented. The backtracking globalization steps are in lines 7 until 15, where
nbt is the maximum number of backtracking steps considered. In this work,
we consider a simple line search scheme of reduction of the steplength (λ),
that is described in [21]. For each backtracking step i, we can consider a
scalar function as:

f(λ) = ‖F(xk + λsk)‖22. (3.13)

This function defines a polynomial and the minimum of that polynomial is
the next steplength. The values of f(0), f ′(0) and the value of f at the
current value of λ (f(λi)) is used to construct a 2nd degree interpolating
polynomial for f . The polynomial p(λ) is

p(λ) = f(0) + f ′(0)λ+ cλ2 (3.14)

where f(0) = ‖F(xk)‖22 is known and f ′(0) can be computed as
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f ′(0) = 2(J(xk)T sk)TF(xk) = 2F(xk)T (J(xk)sk) (3.15)

and

c =
f(λi)− f(0)− f ′(0)λi

λ2i
(3.16)

The minimum of the polynomial (3.14) is

λmin =
−f ′(0)

2c
> 0 (3.17)

Since we are considering Krylov methods to solve the linear system (3.2), the
evaluation of J(xk)sk on (3.17) is done by examination of the final residual
on the linear solver (line 6 on Algorithm 1). Thus, the next steplength λi+1

can be calculated by

λi+1 =











σ0λi if λmin < σ0λi,

σ1λi if λmin > σ1λi,

λmin otherwise

(3.18)

where the parameter σ0 guarantees that, the reduction step does not reach
values close to zero, thus becoming useless and σ1 is an upper limit value.
The typical values for σ0 and σ1 are, respectively, 0.1 and 0.5, as suggested
in [21].
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Chapter 4

Numerical Experiments

This section presents a three-dimensional benchmark problem for Navier-
Stokes equations: the free surface flow on a dam break to compare the forc-
ing terms strategies considering INK and INKB algorithms. The experiments
were run on the SGI Altix ICE 8200 installed at the High Performance Com-
puting Center at COPPE/UFRJ.

The collapse of liquid column is a well known problem, widely employed to
validate free-surface codes based on interface capturing methods since there
are experimental results available (see [23], for details) and several simulation
results obtained with different numerical methods [18, 22]. The problem
consists of a liquid column initially sustained by a dam which is suddenly
removed. The liquid falls under the influence of gravity (g = 9.81 m/s2 ),
acting vertically, and flows downward until hitting the opposite wall. The
model, schematically depicted in Fig. 4.1, is a box with dimensions 4a ×
a × 2.4a, where a is a parameter, assumed here to be equal to 0.146 m,
following [22]. The liquid column has dimensions a× a× 2a. Slip boundary
conditions are used on the walls. This set of boundary conditions makes this
problem basically two-dimensional until the liquid mass hits the opposite
wall, where three-dimensional effects begin to appear. The density of liquid
is ρw = 1, 000 kg/m3 and the dynamic viscosity µw = 0.01 kg/(ms). The
density of the air is assumed to be ρa = 1 kg/m3 and the dynamic viscosity
µa = 0.0001 kg/(ms).

The accuracy of the solution is accessed in terms of volume loss of the
filled region with respect to the initial data. As described in [11], considering
the volume of the region completely filled with water, the relative amount of
fluid lost/gained at a given time step can be calculated by

Ṽ = 100× V tn − V t0

V t0
(4.1)
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where t0 and tn represent the initial and current time steps, respectively, and
Ṽ is the relative volume fluctuation.

Figure 4.1: Geometric for the collapse of a liquid column – The free surface
flow on a dam break

In our experiments we consider the final time equal to 0.3 seconds, a fixed
time-step ∆t = 0.01, the edge-based nodal-block diagonal preconditioned
GMRES solver with 35 vectors to restart (GMRES(35)), the maximum num-
ber of Newton iterations equal to 20, the maximum number ob backtracking
iteration equal to 5 and the Newton tolerance 10−4 for the Navier-Stokes
equations. The VOF solution employs an implicit predictor-multicorrector
scheme, with a fixed edge-based diagonal preconditioned GMRES(25) toler-
ance of 10−3. The multicorrection iterations for the marker function solution
are halted after a relative residual decrease of 3 orders of magnitude. The
unstructured mesh was built with 46, 766 nodes, 251, 807 linear tetrahedra
and consequently 306, 597 edges.

The position of the leading edge of the collapsed water column is shown
in Fig. 4.2, where it is plotted the dimensionless leading edge position (x/a)
versus the dimensionless time (t(2g/a)1/2) for fixed tolerance 10−3, forcing
terms EWK, GLT , and PP , considering INK and INKB algorithms together
with the results by [18, 23]. As one can see, our results are in good agreement
with the experimental and numerical reference data. Moreover, in order to
estimate how the forcing terms influence the volume conservation we present
in Fig. 4.3 the transient volume loss for all forcing terms, which in all cases
volume losses are smaller than 1%.

Figures 4.4 and 4.5 show the liquid configuration at t = 0.1, t = 0.2 and
t = 0.3 seconds, respectively, for fixed tolerance 10−3 and the forcing term
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Figure 4.2: Leading Edge position – The free surface flow on a dam break

16



-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.05  0.1  0.15  0.2  0.25  0.3

EWK
GLT

PP
10-3

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.05  0.1  0.15  0.2  0.25  0.3

EWK
GLT

PP
10-3

Figure 4.3: Volume loss (%) – The free surface flow on a dam break
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EWK, considering INK and INKB algorithms. In general, the results are in
good agreement with the result presented by [22, 11].

(a) Fixed – t = 0.1

(b) Fixed – t = 0.2

(c) Fixed – t = 0.3

Figure 4.4: Fixed tolerance 10−3 – Air-liquid configurations – The free surface
flow on a dam break.

Table 4.1 shows the relative CPU times, where column INK shows the
CPU time for the Inexact Newton-Krylov algorithm and column INKB shows
the CPU time for the Inexact Newton-Krylov Backtracking algorithm, both
considering different forcing terms and a fixed tolerance of 10−3. The relative
CPU time are smaller for all forcing terms in the INKB algorithm compared
with the in INK algorithm. In general the forcing terms can reduce the CPU
time more than 66% for INK algorithm and around 60% for INKB algorithm.

Table 4.1: Relative CPU time – The free surface flow on a dam break.
Forcing Term INK INKB
EWK 0.67 0.59
GLT 0.88 0.76
PP 0.66 0.61
Fixed 10−3 1.00
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(a) EWK – t = 0.1 (b) EWK-BT – t = 0.1

(c) EWK – t = 0.2 (d) EWK-BT – t = 0.2

(e) EWK – t = 0.3 (f) EWK-BT – t = 0.3

Figure 4.5: EWK – Air-liquid configurations – The free surface flow on a
dam break.

Figure 4.6 presents the forcing terms average time history for 30 time
steps – ∆t = 0.01 and the final time equal 0.3 seconds. As we can see in
Fig. 4.6(a), the PP average forcing term is larger than the others for the INK
algorithm, whereas it is closer to the limit for the majority of time steps for
INKB algorithm. The average number of GMRES iterations are larger for
the fixed tolerance solution for both algorithms, INK and INKB (Figs. 4.6(c)
and 4.6(d)). Figures Figs. 4.6(e) and 4.6(f) show that the number of Newton
iterations is smaller for the fixed tolerance solution for both algorithms.
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Figure 4.6: The forcing term behaviour for 30 time steps simulations – The
free surface flow on a dam break.
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Chapter 5

Concluding Remarks

In this work we evaluated the performance of the Inexact Newton-Krylov
method to solve the nonlinear equations arising from the SUPG/PSPG finite
element formulation of transient incompressible fluid flows considering several
forcing terms proposals and a backtracking strategy based on Armijo rule to
improve convergence. We consider the free surface flow on a dam break as a
3D benchmark problem for Navier-Stokes equations. Our experiments have
shown that a suitable choice of the forcing term can lead to an accurate and
efficient numerical solution using considerably less CPU time. Furthermore,
when backtracking is switched on for all forcing terms the CPU times are
reduced.
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