
 http://ijr.sagepub.com/
Robotics Research

The International Journal of

 http://ijr.sagepub.com/content/29/5/485
The online version of this article can be found at:

DOI: 10.1177/0278364909359210

 2010 29: 485 originally published online 25 January 2010The International Journal of Robotics Research
Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo and James Diebel

Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments

Published by:

 http://www.sagepublications.com

On behalf of:

 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for

 http://ijr.sagepub.com/cgi/alertsEmail Alerts:

 http://ijr.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://ijr.sagepub.com/content/29/5/485.refs.htmlCitations:

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/29/5/485
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/content/29/5/485.refs.html
http://ijr.sagepub.com/

Dmitri Dolgov
AI & Robotics Group,
Toyota Research Institute,
Ann Arbor, MI 48105,
USA
ddolgov@ai.stanford.edu

Sebastian Thrun
Michael Montemerlo
James Diebel
Stanford Artificial Intelligence Laboratory,
Stanford University,
Stanford CA 94305,
USA
{thrun, mmde}@ai.stanford.edu

Path Planning for
Autonomous Vehicles in
Unknown
Semi-structured
Environments

Abstract

We describe a practical path-planning algorithm for an autonomous
vehicle operating in an unknown semi-structured (or unstructured)
environment, where obstacles are detected online by the robot’s sen-
sors. This work was motivated by and experimentally validated in the
2007 DARPA Urban Challenge, where robotic vehicles had to au-
tonomously navigate parking lots. The core of our approach to path
planning consists of two phases. The first phase uses a variant of
A* search (applied to the 3D kinematic state space of the vehicle)
to obtain a kinematically feasible trajectory. The second phase then
improves the quality of the solution via numeric non-linear optimiza-
tion, leading to a local (and frequently global) optimum. Further, we
extend our algorithm to use prior topological knowledge of the envi-
ronment to guide path planning, leading to faster search and final tra-
jectories better suited to the structure of the environment. We present
experimental results from the DARPA Urban Challenge, where our
robot demonstrated near-flawless performance in complex general
path-planning tasks such as navigating parking lots and executing
U-turns on blocked roads. We also present results on autonomous
navigation of real parking lots. In those latter tasks, which are sig-
nificantly more complex than the ones in the DARPA Urban Chal-
lenge, the time of a full replanning cycle of our planner is in the range
of 50–300 ms.

The International Journal of Robotics Research
Vol. 29, No. 5, April 2010, pp. 485–501
DOI: 10.1177/0278364909359210
c� The Author(s), 2010. Reprints and permissions:
http://www.sagepub.co.uk/journalsPermissions.nav
Figures 1–15, 17 appear in color online: http://ijr.sagepub.com

KEY WORDS—path planning, autonomous driving

1. Introduction

The task of autonomous driving has received much attention
from the robotics community, especially in recent years with
events such as the DARPA Grand Challenges (Buehler et al.
2005) and the Urban Challenge (Buehler et al. 2008a,b) serv-
ing to catalyze research in the field.

In this paper, we focus on the problem of path planning
for an autonomous vehicle operating in an unknown environ-
ment. We assume the robot has adequate sensing and local-
ization capabilities and must replan online while incremen-
tally building an obstacle map. This scenario was motivated, in
part, by the DARPA Urban Challenge (DUC), where vehicles
had to freely navigate parking lots. The path-planning algo-
rithm described in this paper was used by the Stanford Racing
Team’s robot, Junior (Figure 1), in the DUC1. In the course of
the DUC and the preceding National Qualification Event, Ju-
nior demonstrated near-flawless performance in complex free-
space path-planning tasks (many involving driving in reverse)
such as navigating parking lots, executing U-turns, and dealing
with blocked intersections.

One of the main challenges in developing a practical
path planner for free-space navigation zones, such as park-
ing lots, arises from the fact that the space of all robot con-

1. See http://www.darpa.mil/grandchallenge/rules.asp.

485

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

486 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2010

Fig. 1. Junior, our entry in the DUC. Junior is equipped with
several LIDAR and RADAR units, and a high-accuracy GPS
and inertial-measurement system.

trols (and hence trajectories) is continuous, leading to a com-
plex, continuous-variable optimization problem. Much of the
prior work on search algorithms for path planning (Ersson and
Hu 2001� Koenig and Likhachev 2002� Ferguson and Stentz
2005� Nash et al. 2007) yields fast algorithms for discrete state
spaces, but those algorithms tend to produce paths that are non-
smooth and do not generally satisfy the non-holonomic con-
straints of the vehicle. An alternative approach that guarantees
kinematic feasibility of the path is a forward search in con-
tinuous coordinates, e.g., using rapidly exploring random trees
(Kavraki et al. 1996� LaValle 1998� Plaku et al. 2007). The
key to making such continuous search algorithms practical for
online implementations lies in an efficient guiding heuristic.
Another approach is to directly formulate the path-planning
problem as a non-linear optimization problem in the space of
controls or in the space of parametrized curves (Cremean et
al. 2006). However, in practice, guaranteeing fast convergence
of such programs is difficult due to the complex optimization
landscape with multiple local minima.

Our path-planning algorithm builds on the existing work
discussed above and consists of two main phases. The first
phase uses a heuristic search in continuous coordinates to pro-
duce kinematically feasible trajectories. While lacking theoret-
ical optimality guarantees, in practice this first step typically
produces a trajectory that lies in a neighborhood of the global
optimum. The second phase uses numerical optimization in
continuous coordinates to locally improve the quality of the
solution, producing a path that is at least locally optimal, but in
practice often attains the global optimum. This paper builds on
earlier versions of our path-planing work (Dolgov et al. 2008).

This two-phase approach to path planning works well in un-
structured environments (such as the “free-navigation zones”
in the DUC). However, this free-space planner often produces
trajectories that are not well suited to semi-structured environ-

ments, such as real parking lots. In situations where the envi-
ronment has strong topological structure, it is important for the
robot to observe that structure. For example, cutting across a
parking lot is often considered impolite and can be unsafe if
the robot shares the environment with human drivers.

In scenarios involving semi-structured environments, we
assume that a lane graph representing the topological structure
of the environment is known to the robot. The goal is then to
bias the planner towards trajectories that observe the structure
of the environment, while not restricting the robot to driving on
the given lane graph. For example, in parking lots, we would
like our robotic vehicle (for the most part) to stay on the given
lane graph. However, just as human drivers do, the robot might
need to significantly deviate from the graph while performing
maneuvers such as turning around, pulling in and out of park-
ing spaces, avoiding other cars, etc.

In situations where a topological lane graph is available to
the robot, we extend the two phases of our path-planning algo-
rithm to take that prior information into account. The resulting
algorithm seamlessly integrates free-space and graph planning,
leading to a faster search and producing final trajectories that
are better suited for the environment.

We present results from the DUC as well as from per-
forming navigation in real parking lots. All experiments were
performed on a robotic vehicle, shown in Figure 1, equipped
with a high-accuracy pose-estimation system (Applanix) and
a number of laser range finders, of which the most important
one is the 3D LIDAR (Velodyne).

2. Hybrid-state A* Search

The path-planning problem is as follows. The input is an ob-
stacle map (in our implementation, a grid), an initial state of
the robot s0 � �x� y� ��0, and a goal state sg � �x� y� ��g,
where the �x� y� �� are the location and orientation of the vehi-
cle, respectively. The desired output is a trajectory (sequence
of vehicle states s0� s1� � � � � sn � sg with a certain resolution �s

(�si�si�1� � �s)) that is safe, near-minimal in length, smooth,
and satisfies the kinematic constraints (turning radius) of the
car.

Notice that we do not model the vehicle speed in our plan-
ning problem. Instead, we assume movement at a constant
speed �0,2 find a trajectory that is feasible at that speed, and
then set the velocity profile of the final trajectory as a function
of curvature and proximity to obstacles. As mentioned above,
our algorithm proceeds in two phases.

The first phase uses a variant of the well-known A* (Hart
et al. 1972) algorithm applied to the 3D kinematic state space

2. In the DUC, we used a maximum velocity of 5 mph for parking lots and gen-
erated A* transitions based on the turning radius of our vehicle corresponding
to 360	 of the steering wheel (equivalent to a 25	 turn of the front wheels).

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Dolgov et al. / Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments 487

of the vehicle, but with a modified state-update rule that cap-
tures continuous-state data in the discrete search nodes of A*.
In our implementation, A* used a 4D search space �x� y� �� r�,
where the fourth dimension (r �
0� 1�) represents the current
direction of motion (forward or reverse). We use the direction-
of-motion bit (r) in our path-cost function to apply penalties
for driving in reverse and for switching the direction of mo-
tion. The former is a multiplicative penalty that is applied to
the length of segments driven in reverse, and the latter is an
additive penalty that is applied every time the robot switches
directions.

The hybrid-state A* works as follows. Just as in conven-
tional A*, the search space is discretized and a graph is im-
posed on the grid with centers of cells acting as neighbors in
the search graph. However, unlike traditional A*, our hybrid-
state A* associates with each grid cell a continuous 3D state
of the vehicle. The search then proceeds as follows. Initially,
the current continuous state of the vehicle is associated with
the initial search node. When a node is popped from the open
list of A*, it is expanded by applying several steering actions
(in our implementation there are three: max-left� no-turn�max-
right) to the continuous state associated with the node, and new
children states are generated using a kinematic model of the
vehicle. For each of these continuous children states, we com-
pute a grid cell that it falls into. Then, if a node with the same
grid cell is already present on the A* open list, and the new
cost of the node is lower than the current cost, the continuous
state of the node is updated and the node is re-prioritized on
the open list.

Clearly, our hybrid A* is similar to Field D* (Ferguson and
Stentz 2005). Both address the limitation of classical A* where
only the centers of grid cells can be visited. However, the dif-
ference between the approaches (as illustrated in Figure 2) is
that Field D* is limited to piecewise-linear paths, whereas hy-
brid A* is not, and because it uses a continuous kinematic
model when expanding the nodes, the paths produced by hy-
brid A* are guaranteed to be drivable.

However, our hybrid-state A* is not guaranteed to find the
minimal-cost solution because of the discretization of controls
and time, as well as the effective pruning of all but one of the
continuous-state branches that enter a cell. Furthermore, we
are also giving up theoretical guarantees of search complete-
ness by changing the reachable state space, since the search
violates the Markov property of the graph (because the transi-
tions from a state are now a function of the continuous coordi-
nates within that state). However, the resulting path is guaran-
teed to be kinematically feasible (rather than being piecewise-
linear as in the case of conventional A*). In practice, hybrid-
A* always finds a solution in realistic environments and the
obtained solution typically lies in the neighborhood of the
global optimum. This allows us to frequently arrive at the glob-
ally optimal solution via the second phase of our algorithm
(which uses gradient descent to locally improve the path, as
described below).

Fig. 2. Graphical comparison of search algorithms. Left: A*
associates costs with centers of cells and only visits states that
correspond to grid-cell centers. Center: Field D* (Ferguson
and Stentz 2005) associates costs with cell corners and allows
any linear path from cell to cell. Right: Hybrid A* associates a
continuous state with each cell, and the score is the cost of its
associated continuous state.

2.1. Heuristics

Our search is guided by two heuristics which are described
below and illustrated in Figure 3. These heuristics do not rely
on any properties of hybrid-state A* and are also applicable to
other search methods (e.g. conventional discrete-state A*).

The first heuristic, which we call non-holonomic-without-
obstacles, ignores obstacles but takes into account the non-
holonomic nature of the car. To evaluate this heuristic, we
compute the shortest path to the goal from every point in the
4D space �x� y� �� r� in some discretized neighborhood of the
goal, assuming an obstacle-free environment3. Clearly, this
cost is an admissible heuristic. The effect of this heuristic is
that it assigns high costs to search branches that approach the
goal with the wrong heading. Because this heuristic does not
depend on run-time sensor information, it can be fully pre-
computed offline (and then simply translated and rotated to
match the current goal). In our experiments in real driving
scenarios, this heuristic provided significant improvements in
the number of nodes expanded over the naive 2D Euclidean-
distance cost. For example, in the situation shown in the top
row of Figure 3, a search with the Euclidean-distance heuris-
tic expands 20,790 nodes, while the non-holonomic-without-
obstacles heuristic expands 12,196 nodes. The heuristic is sen-
sitive to the density of obstacles in the environment. In rel-
atively densely populated environments, such as the ones in
Figure 3, the benefits are fairly small (a factor of two in Fig-
ure 3(b)). In sparser parking lots (such as those in the Urban
Challenge), we frequently obtained an order-of-magnitude im-
provement in the number of expanded nodes.

The second, holonomic-with-obstacles heuristic is a dual of
the first in that it ignores the non-holonomic nature of the car,
but uses the obstacle map to compute the shortest distance
to the goal by performing dynamic programming in 2D. In

3. During the Urban Challenge, we used a 160 m � 160 m grid with 1 m �
1 m� 5	 resolution.

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

488 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2010

Fig. 3. Search heuristics. Euclidean 2D distance expands 20,790 nodes (a). The non-holonomic-without-obstacles heuristic is
better: it expands 12,196 nodes (b), but can lead to wasteful exploration of dead-ends in more complex settings (c), where it
expands 37,181 nodes. Combining the latter with the holonomic-with-obstacles heuristic leads to a search tree with 11,302 nodes
(d).

essence, given some path-cost function (e.g. collision avoid-
ance) imposed on the configuration space f3�x� y� ��, we cre-
ate a 2D version f2�x� y� � min� f3�x� y� ��. For example, a
2D state is assumed to be safe (collision cost is 0) if there ex-
ists at least one safe 3D state with the same 2D projection. This
heuristic is clearly admissible. It captures the 2D geometry of
the obstacle map� for example, it discovers all U-shaped obsta-
cles and dead-ends in 2D and then guides the more expensive
4D search away from these areas.

Since both heuristics are mathematically admissible in the
A* sense, the maximum of the two can be used. In the sce-
nario shown in the bottom row of Figure 3, a search using only
the first (non-holonomic-without-obstacles) heuristic expands
37,181 nodes, while a search that uses both heuristics expands
11,302 nodes.

Heuristics that are essentially equivalent to the ones de-
scribed above were also independently developed (for a
slightly different search method) by the CMU team for the
DUC (Likhachev and Ferguson 2008� Urmson et al. 2008).
Our non-holonomic-without-obstacles heuristic also parallels

the notion of a non-holonomic metric (Laumond et al. 1998�
LaValle 2006).

2.2. Analytic Expansions

The forward search described above uses a discretized space
of control actions (steering). This means that the search will
never reach the exact continuous-coordinate goal state (the ac-
curacy depends on the resolution of the grid in A*). To ad-
dress this precision issue, and to further improve search speed,
we augment the search with analytic expansions based on the
Reed–Shepp model (Reeds and Shepp 1990). In the search de-
scribed above, a node in the tree is expanded by simulating a
kinematic model of the car (using a particular control action)
for a small period of time (corresponding to the resolution of
the grid).

In addition to children generated in such a way, for some
nodes an additional child is generated by computing an optimal
Reed–Shepp path from the current state to the goal (assuming

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Dolgov et al. / Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments 489

Fig. 4. Analytic Reed–Shepp expansion. The search-tree
branches corresponding to short incremental expansions are
shown in the yellow–green color range and the Reed–Shepp
path is the purple segment leading towards the goal.

an obstacle-free environment). The Reed–Shepp path is then
checked for collisions against the current obstacle map, and the
child node is only added to the tree if the path is collision-free.
Despite the fact that Reed–Shepp expansions are done analyt-
ically (i.e. in constant time), in our implementation they are
slightly more expensive than the regular forward node expan-
sions. Therefore, it might not be desirable to apply the Reed–
Shepp expansion to every node (especially far from the goal,
where most such paths are likely to go through obstacles). In
our implementation we used a simple selection rule where the
Reed–Shepp expansion is applied to one of every N nodes,
where N decreases as a function of the cost-to-goal heuristic
(leading to more frequent analytic expansions as we get closer
to the goal).

A search tree with the Reed–Shepp expansion is shown in
Figure 4. The search tree generated by the short incremental
expansion of nodes is shown in the yellow-green color range,
and the Reed–Shepp expansions is shown as the single purple
line leading to the goal. We found that this analytic extension
of the search tree leads to significant benefits in both accuracy
and planning time.

The computational benefits of using the Reed–Shepp an-
alytic expansions highly depend on the density of obstacles
in the environment. On one side of the spectrum are large
obstacle-free environments, where Reed–Shepp expansions
will find a solution in one step, whereas a forward search will
scale with the size of the environment. On the other side of
the spectrum are environments with high density of obstacles,
where most Reed–Shepp expansions will result in collisions
and will have to be pruned. However, we found that in typical
driving scenarios this technique leads to noticeable gains in re-
planning speed. We discuss empirical results of the benefits in
Section 5.

2.3. Variable Resolution Search

In typical applications of a forward search it is desirable to
use a resolution that is as fine as possible, given the compu-
tational limitations. The main reasons for this are: (i) com-
pleteness (in our domain, narrow passages might become un-
traversable if the resolution is too coarse)� (ii) optimality (in
our domain, coarse resolution often leads to trajectories that
oscillate around the optimal solution)� and (iii) computational
efficiency.

Given our two-phase approach, where the second step lo-
cally optimizes the trajectory (as described in Section 3), the
second issue (optimality) is not a problem. Indeed, as long as
phase one produces a feasible solution in the neighborhood of
the optimum, the second phase will find that optimum using a
gradient descent.

However, the first issue (completeness) is a concern as is the
third one (efficiency). Our implementation of forward search
allows for a straightforward realization of variable-resolution
search, where the length of the trajectory arcs generated during
the node expansion is determined by the amount of obstacle-
free space around the node. In our implementation, the grid
resolution is held constant, which means that the arc size is
always lower-bounded by the size of a grid cell. Because of
this, we still cannot guarantee theoretical completeness, but
it does help (in practice) in terms of both completeness and
speed. It is also possible to combine variable-resolution steps
with a variable-resolution grid, leading to stronger complete-
ness guarantees. We have not done this in our implementa-
tion because of the overheads associated with maintaining a
variable-resolution grid.

Given a point �x� y� in the 2D workspace, we compute the
distance to the nearest obstacle d��x� y� and the distance to
the nearest edge of the Generalized Voronoi Diagram (GVD)
d��x� y�. When expanding a node �x� y� �� r�, we consider the
size of the free-space region d��x� y� d��x� y� around the
point �x� y� to determine the length of the emanating trajec-
tory arcs (or, equivalently, the time duration for which we
unroll the kinematic model). The larger the Voronoi region
d��x� y� d��x� y�, the longer are the arcs generated from
node �x� y� �� r�.

In essence, this technique allows us to take big steps for-
ward in wide-open areas, while using a fine resolution in nar-
row passages. The use of the total “width” of the current
Voronoi region d��x� y� d��x� y� instead of a more naive
metric of proximity to obstacles d��x� y� ensures that search
effort is not wasted near obstacles that have large free-space
regions surrounding them.

3. Trajectory Optimization

As we have already mentioned, the paths produced by hybrid-
state A* are often suboptimal and worthy of further improve-
ment. Empirically, we find that such paths are drivable, but

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

490 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2010

can contain unnatural swerves that require excessive steering.
We therefore post-process the hybrid-state A* solution by ap-
plying the following two-stage optimization procedure. In the
first stage, we formulate a non-linear optimization program
on the coordinates of the vertices of the path that improves
the length and smoothness of the solution. We solve this op-
timization using conjugate-gradient (CG) descent, which is
a fast numerical-optimization technique. This first optimiza-
tion essentially moves around the vertices of the path to im-
prove smoothness, but does not explicitly change the path’s
discretization.

Because the discretization of the resulting path is too coarse
for comfortable control of a physical vehicle (�0�5 m), we
then execute a second stage that performs non-parametric in-
terpolation on the output of the first stage using another iter-
ation of a CG. The interpolated paths have higher-resolution
discretization (around 5–10 cm) and are suitable for smooth
control of the robot.

The first optimization is described below (Section 3.1
defines the core of the approach, and Sections 3.2 and 3.3
present some technical refinements). The interpolation step is
discussed in Section 3.4.

3.1. Trajectory Smoothing via Conjugate Gradient

Given a sequence of vertices xi � �xi � yi �� i � [1� N], we
define several quantities: (i) oi , the location of the obstacle
nearest to the vertex� (ii) 	xi � xi � xi�1, the displacement
vector at the vertex� (iii) 	
i � � tan�1 	yi1

	xi1
� tan�1 	yi

	xi
�,

the change in the tangential angle at the vertex. The objective
function is defined as:

�o

N�
i�1

� o ��xi � oi � � dmax��
N�1�
i�1

�

�
	
i

�	xi � � max

�

 �s

N�1�
i�1

�	xi1 �	xi �
2� (1)

where max is the maximum allowable curvature of the path
(defined by the turning radius of the car), and � o and � are
penalty functions (empirically, we found quadratic penalties to
work well)� �o� ���s are weights.

The first term penalizes collisions with obstacles. The sec-
ond term imposes an upper bound on the instantaneous cur-
vature of the trajectory at every node and enforces the non-
holonomic constraints of the vehicle. The third term is a mea-
sure of the smoothness of the path.

For a fast implementation of a CG, it is imperative that
the cost function has a well-behaved gradient that can be
efficiently computed. In our case, the function is differentiable
with respect to the coordinates of the vertices �xi � yi �, and an
analytical gradient can be computed directly, as described be-
low.

For the collision penalty with a quadratic � o � ��xi � oi � �
dmax�

2, we have when �xi � oi � � dmax:

�� o

�xi
� 2��xi � oi � � dmax�

xi � oi

�xi � oi � �

For the maximum-curvature term at vertex i , we have to
take the derivatives with respect to the three points that affect
the curvature at point i : xi�1, xi , and xi1. For this computa-
tion, the change in the tangential angle at node i is best ex-
pressed as

	
i � cos�1 	xT
i 	xi1

�	xi ��	xi1� � (2)

and the derivatives of curvature i � 	
i��	xi � with respect
to the three nodes are then:

� i

�xi
� � 1

�	xi �
�	
i

� cos�	
i �

� cos�	
i �

�xi
� 	
i

�	xi �2
�	xi

�xi
�

� i

�xi�1
� � 1

�	xi �
�	
i

� cos�	
i �

� cos�	
i �

�xi�1
� 	
i

�	xi �2
�	xi

�xi�1
�

� i

�xi1
� � 1

�	xi �
�	
i

� cos�	
i �

� cos�	
i �

�xi1
�

where

�	
i

� cos�	
i �
� � cos�1�cos�	
i �

� cos�	
i �
� �1

�1� cos2�	
i ��
1�2
�

The derivative of cos�	
i � is easiest expressed in terms of or-
thogonal complements:

a � b � a� aTb
�b�

b
�b� � (3)

Introducing the following normalized orthogonal comple-
ments:

p1 � xi � ��xi1�

�xi ��xi1� � p2 � ��xi1� � xi

�xi ��xi1� � (4)

we can then express the derivatives as:

� cos�	
i �

�xi
� �p1 � p2� � cos�	
i �

�xi�1
� p2�

� cos�	
i �

�xi1
� p1� (5)

The result of performing the smoothing step described above
is shown in Figure 5� the wavy red line is the A* solution and
the smooth blue line is the path obtained by CG.

3.2. Guaranteeing Smoother Safety

The smoothing problem formulated above has a potential term
responsible for collision avoidance, however, the potential

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Dolgov et al. / Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments 491

Fig. 5. Hybrid-A* and CG-smoothed paths for a complicated
maneuver, involving backing out of and into parking spots. The
Hybrid-state A* path is the wavy red line and the CG solution
is the smooth blue line.

Fig. 6. Anchoring waypoints to guarantee smoother safety.

does not guarantee that the solution is collision free. The rea-
son is that the potential attempts (within its effective range)
to maximize the distance between every vertex of the trajec-
tory and the nearby obstacles. However, this is not always the
right solution. For example, when approaching a narrow gap
between obstacles at an angle (as illustrated in Figure 6), the
trajectory for the center of the rear axle of the vehicle stays
closer to one side of the gap, allowing the car to safely turn into
the gap. Unfortunately, because the collision-potential used in
the smoother does not model the shape of the vehicle, it is un-
able to do such precise collision detection and will center the
trajectory within the gap, resulting in an unsafe maneuver.

While it is possible to model precise collision detection
within the smoother, it is computationally prohibitive. In par-
ticular, computing the derivative of the collision cost with re-
spect to the coordinates of the path of the rear axle is a compu-
tationally intensive task which has to be performed within the
inner loop of CG optimization.

Therefore, we opt for a computationally simpler (albeit
less elegant) solution that guarantees that smoother output is
collision-free. We use an iterative approach that works, as fol-
lows. We run the CG smoother and check its output for colli-
sions. If we find any unsafe states, we anchor them to the A*
solution (the smoother is not allowed to modify the coordinates
of anchored states) and re-run the smoother. This process is re-
peated until the smoother output is collision-free. It is guaran-
teed to converge because A* path is guaranteed to be safe. In
the worst case, the smoother will return the same solution as
A*, which will only happen under extreme circumstances.

Figure 6 illustrates the process. As before, the wavy red
curve shows the path produced by A*, while the straight blue
line is the output of the smoother. The circles designate states
that ended up being anchored to the A* path (i.e., not allowed
to move). Notice that in this rather constrained problem, only
a few states are locked down, while the rest of the trajectory is
successfully smoothed.

A video corresponding to the situation in Figure 6 is
available from the following URL: http://ai.stanford.edu/
%7Eddolgov/gpp/anchors.avi.

3.3. Navigation Potential Using the Voronoi Field

One issue that we have omitted from our discussion of path
planning so far is the trade-off between proximity to obstacles
and trajectory length. A weakness of the path-planning algo-
rithm as described in the previous sections is that it tends to
“hug walls”, i.e., it will choose the minimal-length trajectory
that is collision free, often causing the robot to drive at the
minimal collision-free distance to obstacles.

A common way of penalizing proximity to obstacles is to
use a potential field (see, e.g., Andrews and Hogan (1983(@),
Pavlov and Voronin (1984), Miyazaki and Arimoto (1985) and
Khatib (1986)). However, conventional potential fields have
a couple of important drawbacks. First, as has been observed
by many researchers (see, e.g., Tilove (1990) and Koren and
Borenstein (1991)), conventional potential fields create high-
potential areas in narrow passages, which can make the cost
of traversing these passages prohibitively high. Second, which
plays an even more important role in our approach, is compu-
tational efficiency. A straightforward potential around an ob-
stacle is typically defined as a function of the distance to the
obstacle. This means that in order to compute the value of such
a potential field at a given �x� y� point, we need to compute the
contributions of the potentials from all obstacles that contain
�x� y� within their effective radius. This can be computation-
ally expensive. A common technique to avoid this issue is to
approximate the potential by using only the contribution of the
potential from the nearest obstacle, which can be computed
much more effectively. However, this introduces another prob-
lem. Since we will use the potential within the CG smoother,
we need the potential to be smooth and have a well-defined

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

492 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2010

Fig. 7. Best viewed in color. The Voronoi field in a typical parking lot. The obstacle map is shown in (a), the corresponding
generalized Voronoi diagram is shown in (b). Compare the resulting Voronoi field shown in (c) to a standard potential field in
(d). Notice the high-potential regions in narrow passages in (d).

derivative with respect to �x� y�. The difficulty stems from the
fact that a conventional potential approximated via the distance
to the nearest obstacle (as described above) has an ill-defined
gradient on the edges of the Voronoi diagram of the obstacle
map.

To address these issues, we introduce a potential, termed
the Voronoi field, that rescales the field based on the geom-
etry of the workspace. This potential allows precise naviga-
tion in narrow passages while also effectively repelling the ro-
bot from obstacles in wider areas. Furthermore, the potential
can be efficiently computed and has a well-defined, continu-
ous derivative everywhere in �x� y�.

Given a point �x� y� in the 2D workspace, we compute the
distance to the nearest obstacle (d�) and the distance to the
nearest edge of the GVD (d�). The potential is then defined in
terms of these distances as:

�V �x� y� �
�

�

� d��x� y�

��
d��x� y�

d��x� y� d��x� y�

�

� �d� � dmax
� �2

�dmax
� �2

� (6)

where � � 0, dmax
� � 0 are constants that control the falloff

rate and the maximum effective range of the field, respectively.

The expression in (6) is for d� � dmax
� � otherwise, we let

�V �x� y� � 0.
This potential has the following properties: (i) it is zero

when d� � dmax
� � (ii) �V �x� y� � [0� 1] and is continuous

on �x� y�, since we cannot simultaneously have d� � d� � 0�
(iii) it reaches its maximum only within obstacles� and (iv) it
reaches its minimum only on the edges of the GVD.

The key advantages of the Voronoi field are as follows.
Firstly, the field is scaled in proportion to the total available
clearance for navigation. As a result, even narrow openings re-
main navigable with low costs, which is not always the case
for standard potential fields. Secondly, the field at any point
�x� y� only depends on the distance to the nearest obstacle and
the nearest point on the Voronoi edge, which means that the
value can be computed efficiently using one of known efficient
algorithms for computing distance fields on grids4. Finally, the
Voronoi field has a well-defined derivative, which is a require-
ment for the CG smoother.

Figure 7 illustrates the Voronoi field in a parking lot. Fig-
ure 7(a) shows the obstacle map, Figure 7(b) shows the corre-

4. If an additional increase in speed is desired, instead of using Euclidean
distance one might use a quasi-Euclidean metric (e.g. Rosenfeld and Pfaltz
1966) as an approximation.

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Dolgov et al. / Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments 493

Fig. 8. A piecewise-cubic fit between five points is shown. Parametric interpolation using cubic splines is sensitive to noise in
input� as one of the points moves closer to its neighbor, the parametric curve exhibits a large oscillation.

sponding GVD, and Figure 7(c) gives the 2D projection of the
resulting Voronoi field. Notice that narrow passages between
obstacles that are close to each other are not blocked off by
the potential, and there is always a continuous �V � 0 path
between them. Compare this to an example of a conventional
potential field ��x� y� � ��� d��x� y���1 shown in Fig-
ure 7(d), which has high-potential regions in narrow passages
between obstacles.

To make use of the Voronoi field in the smoother, we sim-
ply add the following term to the objective function of the
smoother (1):

��

N�
i�1

�V �xi � yi ��

where �� is the weight associated with the Voronoi field.
Finally, we have to compute the derivative of the Voronoi

field with respect to the coordinates xi of the trajectory. We
have when d� � dmax

� :

��V

�xi
� ��V

�d�

�d�
�xi

 ��V

�d�

�d�
�xi

�

�d�
�xi

� xi � oi

�xi � oi � �
�d�
�xi

� xi � vi

�xi � vi � �

��V

�d�
� �

� d�

�d� � dmax
� �2

�dmax
� �2

d�
�d� d��2

�

��V

�d�
� �

� d�

d�
d� d�

�d� � dmax
� �

�dmax
� �2

�
���d� � dmax

� �

� d�
� d� � dmax

�
d� d�

 2

�
�

where vi is a 2D vector of the coordinates of the point on the
edge of the GVD that is closest to the vertex i . We compute
the nearest obstacle oi and the nearest GVD-edge point vi by
maintaining a kd-tree of all obstacle points and GVD-edge
points and updating the mapping of vertices to their nearest
neighbors, when necessary, within the inner loop of a CG.

We should note that the use of Voronoi diagrams and poten-
tial fields has long been proposed in the context of robot mo-
tion planning. For example, Voronoi diagrams can be used to
derive skeletonizations of the free space as proposed by Choset

and Burdick (2000). However, navigating along the Voronoi
graph is not possible for a non-holonomic car.

Navigation functions (Koditschek 1987� Rimon and
Koditschek 1992) as well as Laplace potentials (Connolly et
al. 1990) are also similar to our Voronoi field in that they con-
struct potential functions free of local minima for global navi-
gation. We do not use the Voronoi field for global navigation.
However, we observe that for workspaces with convex obsta-
cles, the Voronoi field can be augmented with a global attrac-
tive potential, yielding a field that has no local minima and is
therefore suitable for global navigation.

3.4. Trajectory Interpolation

Using the CG smoothing described above, we obtain a path
that is much smoother than the A* solution, but it is still
piecewise linear, with a significant distance between vertices
(around 0.5–1 m in our implementation). This can lead to
abrupt steering when used on a physical vehicle. To address
this, we further smooth the path by interpolating between the
vertices of the CG solution.

Many parametric interpolation techniques are sensitive to
noise in the input. For example, cubic splines exacerbate any
such noise and can lead to arbitrarily large oscillations in the
output as vertices in the input are moved closer to each other.
This effect is illustrated in Figure 8, where a cubic spline be-
tween five points is shown. As one of the input points (shown
as the large red dot) is moved closer to its neighbor, the para-
metric curve exhibits very large deviations from the input.

Therefore, we use non-parametric interpolation, where we
super-sample the path, and then use CG to minimize the cur-
vature of the path, while holding the original vertices fixed.
The result of interpolating the path in Figure 9(a) is shown in
Figure 9(b) (the paths for both the front and the rear axles are
shown).

4. Graph-guided Path Planning in
Semi-structured Environments

The free-space path planner described above is well-suited for
unstructured (or poorly structured) environments, such as the

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

494 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2010

Fig. 9. Non-parametric interpolation. The input path is shown in (a), the result of the interpolation is shown in (b). The planned
paths of both the front and the rear axles are shown.

Fig. 10. Best viewed in color. Comparison of the 2D heuristic for the same environment with (b) and without (a) using a lane-
network graph. The green (light) color component decreases and the red (dark) component increases with distance to the goal.
Notice the difference in the costs between (a) and (b) in the obstacle-free region on the right. The lane network is shown in white
for the case that uses it (b).

free-navigation zones in the DUC. However, in better struc-
tured environments, it becomes important to realize advanced
driving behaviors, such as observing the topological structure
of parking lots (not cutting across), staying in the correct lane,
passing oncoming traffic on the correct side of the road, etc.

To realize these more advanced driving behaviors, we as-
sume that the robot has prior knowledge of a lane-network
graph that captures the topological structure of the environ-
ment. In this work we ignore the problem of the creation of
such graphs. From the perspective of the path planner, it is
not important where that information comes from� the graph
might be constructed manually, or it might be automatically
estimated from sensor data using a variety of techniques (see,
e.g., Seo et al. (2009) and Dolgov and Thrun (2009)). An ex-
ample of a lane-network graph is shown in Figure 10(b).

The role of the lane network in the path-planning process
is twofold. First, it modifies the cost function over trajectories,
in that paths deviating from the lane network incur a higher
cost. Second, since the lane network captures the topological

structure of the environment, the graph provides a set of macro
actions that are particularly well-tuned to the current environ-
ment.

Below we describe the modifications to the two phases (A*
and smoothing) of our planning algorithm that allow us to use
the lane-network graph to guide the planning process.

4.1. A* Search in Semi-structured Environments

Given a lane network represented as a directed graph � �
�V� E� with �E denoting the angle of edge E , define a dis-
tance from a vehicle state s � �x� y� to the graph:

���� �x� ��� � min
�

E : ��E � � � � �min
���E� x�� (7)

where ��E� x� is the Euclidean distance between a line seg-
ment E and a point x. In words, we define the distance be-
tween a state of the vehicle and the lane-network graph as the

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Dolgov et al. / Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments 495

Euclidean distance between the �x� y� position of the car and
the nearest edge, whose orientation is close (within some con-
stant �min) to the orientation of the vehicle.

The traversal cost of A* that takes into account the lane-
network graph � is defined as:

C
��x� �� r�� �x	x� � d�� r ��� � dl

�
1 ��1� r�Crev

�

 ��1� �r � r ���Csw dl �
����x� ����� � �min

�
C��

where ��i� is the Kronecker delta5� Crev and Csw are costs for
driving in reverse and switching the direction of motion, re-
spectively (this is the same as in the free-space planner)� C� is
the multiplicative penalty for deviating from the lane network
by a distance of more than some constant �min (this is the new
cost for the planner using the graph �).

Of the two heuristics described in Section 2.1, the first one
(non-holonomic-without-obstacles) remains useful and admis-
sible and does not require any changes. The second heuristic
(holonomic-with-obstacles) remains admissible in the case of
semi-structured planning (deviating from the lane graph only
increases costs), but it provides poor guidance for the search.
The heuristic can be easily modified to take into account the
graph-modified traversal costs defined above. We retain the
admissibility of the heuristic in the 2D (x� y) case by taking
the distance to the graph to be the distance from the closest 3D
(x� y� �) state: ��x��� � min� ���x� �����.

Figure 10 illustrates the modifications to the holonomic-
with-obstacles heuristic. Figure 10(a) shows the heuristic for
the free-space planning problem, while Figure 10(b) shows
the version using the modified traversal costs that take the
lane network into account. Notice the difference in costs in
the obstacle-free region on the right. The graph-informed plan-
ner correctly estimates the high-cost region (due to topological
structure) before it detects obstacles in that region.

The second use of the lane-network graph in A* is that it
provides a good set of macro actions, tuned to the topology of
the driving environment. We utilize this in the node-expansion
step of A* search. As in the case of the free-space planner,
when expanding a search node, we generate a fixed number
of children nodes by applying a predefined set of control ac-
tions to the parent. In addition to that, we also apply a set of
macro-actions that use the Reed–Shepp model to analytically
compute a path to nearby nodes of the graph �. If the resulting
Reed–Shepp curve is collision-free, the corresponding child is
added to the search tree.

Figure 11 illustrates the process. The Reed–Shepp curves
corresponding to macro-actions to and between nodes of the
lane-network graph � are shown in purple, while free-space
expansions are shown in yellow. Notice the area where the
blocked lane prevents transitions between graph nodes, result-
ing in free-space forward expansions around the obstacle, until

5. Kronecker delta ��i� is defined as ��0� � 1� ��i �� 0� � 0.

Fig. 11. Best viewed in color. Combining the topological graph
search and the free-space path planning. The Reed–Shepp tran-
sitions to and between nodes of the lane-network graph � are
shown in purple. The forward free-space expansions are shown
in yellow.

a collision-free Reed–Shepp solution can be generated to the
next graph node.

4.2. Trajectory Smoothing in Semi-structured Environments

Finally, we describe modifications to the CG smoother for bi-
asing the solution towards curves that lie close the graph �.
Given a trajectory s �
xi � � i�, we minimize the potential:

��s� � �freespace�s���
�

i

���xi � � i ����� (8)

where �0�s� includes the potential terms used in the free-space
planner (Section 3), while the second term provides a penalty
for deviating from the graph (�� is the associated weight).

As before, we need to compute the derivative of the second
term in (8) with respect to coordinates of the trajectory xi .

For a given state �xi � � i �, we find the closest edge Emin,
whose orientation satisfies the condition ��E � � i � � �min and
compute the derivative of the distance between xi and Emin.
Let the edge Emin have endpoints p0 and p1�, and define p �
p0 � p1. For notational convenience, let us also refer to the
current trajectory vertex xi as d. Our goal then is to compute
the derivative of the distance between point d and edge p.

Let e be the projection of d onto p.

e � p1 �p� � � �d� p1��p�
�p�2

� (9)

Consider the case where 0 � � � 1, i.e. d is closer to the
interior of the segment �p0� p1� than to either of the endpoints
(otherwise the problem reduces to the derivative of distance
between two points, which was discussed in Section 3).

We seek the derivative of the length of r � d � e (vector
from data point d to the projection point e):

��r�
�d

� rT

�r�
�r
�d
� rT

�r�
��d� e�
�d

� rT

�r�
�

I � ��
�d

T

p
�
�

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

496 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2010

Fig. 12. Best viewed in color. Examples of trajectories generated by our planner and driven during the DUC. Trajectories shown
in (a)–(f) were driven as part of the National Qualification Event, while (g)–(i) were executed during the race itself. Paths driven
in parking lots and several U-turns on blocked roads are shown.

Expanding the last term

��

�d
� 1

�p�2

�d� p
�d

� 1

�p�2
�I p� � p

�p�2
�

we finally obtain

��r�
�d

� 1

�r�
�

rT � pT

�p�2
�rp�

�
�

5. Results

We present empirical results regarding the performance of our
path planner below. Section 5.1 presents results from the DUC
(using the free-space planner described in Sections 2 and 3).
Section 5.2 presents results from real parking lots, using the
graph-guided planner described in Section 4.

We used the following parameters for our planner: the ob-
stacle map was of size 160 m�160 m with 0.15 cm resolution�
A* used a grid of size 160 m�160 m�360	 with 1 m x–y res-
olution and 5	 resolution for the heading � . In real-life parking

lots, typical running times for a full replanning cycle involv-
ing the hybrid A* search, CG smoothing, and interpolation are
around 50–300 ms. The time used by the planner in the DUC
was significantly lower due to low density of obstacles and
relatively small environments.

Several videos illustrating the results discussed in
this section are available from http://ai.stanford.edu/
%7Eddolgov/gpp/.

5.1. Free-space Planning in the DARPA Urban Challenge

Figure 12 depicts several trajectories driven by Junior (Fig-
ure 1) during the DUC. Trajectories in Figures 12(a)–(f) were
driven as part of the National Qualifying Event. Trajectories
shown in Figures 12(g)–(i) were executed during the race it-
self. Obstacles from current sensor scan are shown as 3D pil-
lars (red), while the obstacle map obtained by integrating ear-
lier sensor scans is show as 2D (black).

Figures 12(a), (b), and (i) show trajectories driven within
free-navigation zones. Figure 12(a) is notable because it in-
volved parking in a spot between real vehicles. Figure 12(b)

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Dolgov et al. / Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments 497

Fig. 13. Left: Trajectory driven in simulation using the free-space version of our planner. The robot had to replan in response to
obstacles being detected by its sensors� this explains the apparent sub-optimality of the trajectory. Right: re-planing times for the
maze-like environment (total time � A* time smoothing time.)

shows Junior driving through a parking zone, while two other
cars are present in the same zone.

Figure 12(i) is interesting because Junior had to navi-
gate around other cars near the entrance into the zone. A
video of the parking task in Figure 12(a) is available at
http://ai.stanford.edu/%7Eddolgov/gpp/duc_nqe_park.mpg.

Figures 12(c)–(f) show U-turns on blocked roads that
were performed using the free-space planner. Videos of Ju-
nior performing U-turns are available at http://ai.stanford.edu/
%7Eddolgov/gpp/duc_nqe_uturn.mpg and http://ai.stanford.
edu/%7Eddolgov/gpp/duc_nqe_uturn2.mpg.

Figure 12(h) shows a parking task during the DUC race�
the maneuver was straightforward, because there were no ob-
stacles in the parking lot. After parking in the designated spot,
in accordance with the DUC rules, Junior backed out of the
spot before proceeding to the parking-lot exit.

Figure 12(i) shows the start of one of the missions dur-
ing the DUC race� each DUC mission started with a free-
navigation zone, which was traversed using the free-space
planner described in this paper.

Most of the path-planning tasks in the DUC were fairly
simple. As an example of the performance of our free-space
planner in a more complex environment, consider the tra-
jectory shown in Figure 13. This example was generated in
simulation� the simulated vehicle was equipped with a sin-
gle planar laser range finder mounted on the front of the car.
Such intentionally poor (simulated) sensing led to frequent
replanning as obstacles were incrementally detected� this is
the source of the apparent sub-optimality of the path shown
in Figure 13. A video showing the robot driving through the
environment and replanning as it detects new obstacles and
builds an obstacle map in scenario of Figure 13 is available at
http://ai.stanford.edu/%7Eddolgov/gpp/maze.mpg.

Figure 14 illustrates the benefits of using the Analytic
Reed–Shepp expansions described in Section 2.2. The graph

Fig. 14. Comparison of A* with and without Reed–Shepp an-
alytic node expansions. The graph shows data for a typical run
in units of relative time, normalized by the average planning
time when using Reed–Shepp expansions. The red solid line is
the re-planning time without Reed–Shepp expansions, while
the blue dashed line is the re-planning time with Reed–Shepp
expansion.

shows re-planning time for a representative run in a parking lot
with and without the Reed–Shepp expansions. The units are
relative time normalized by the average planning time when
using Reed–Shepp expansions. As was mentioned earlier in
Section 2.2, Reed–Shepp expansions are not strictly guaran-
teed to improve planning time (because of the constant-time
overhead), but in practice lead to noticeable efficiency gains.

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

498 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2010

Fig. 15. Free-space path planning (top) versus graph-guided planning (bottom). The left column shows the set of all trajectories
generated as the vehicle detects new obstacles and replans. The right column shows the final trajectory driven.

Fig. 16. Number of nodes expanded by each of the replanning iterations in Figure 15. The free-space search performed 22
iterations, while the graph-guided search performed only 3.

5.2. Path Planning in Semi-structured Environments

This section presents experimental results comparing free-
space planning to semi-structured planing guided by a lane-
network graph. Experiments presented in this section used A*
with the following resolution 1 m x–y in x–y and 5	 resolution
for the heading � .

Figure 15 illustrates the benefit of using a topological graph
to guide path planning, compared to a free-space planner. The
left column of Figure 15 shows the set of all trajectories gener-
ated as the vehicle moves towards its goal, detects new obsta-
cles, and replans. The right column shows the final trajectory
that was driven. The top row shows the results for a free-space
planner, while the bottom row shows the results for a planner
guided by a lane-network graph. Due to a strong prior provided
by the graph, the latter performs fewer replanning cycles (3
compared with 21) and results in a better final trajectory. Fig-
ure 16 shows the number of expanded nodes per replanning
cycle for the two cases. Summing up over all the replanning

cycles, the graph-guided planner expands a significantly lower
total number of nodes (�15,000 versus �635,000).

A video illustrating the difference between free-space and
graph-guided planning for the scenario in Figure 15 as well
as another parking task is available at http://ai.stanford.edu/
%7Eddolgov/gpp/structure.mpg.

Figure 17 shows a few path-planning experiments per-
formed in a real parking lot. All the generated trajectories fol-
low the topological structure of the environment, but in this
case this behavior is not due to the lane-graph guidance, but
is simply due to the fact that the environment is fairly densely
populated. However, even in such densely populated environ-
ments, the efficiency gains of using an environment structure
for planning are significant when the robot does not have a
full obstacle map and must incrementally explore the environ-
ment using limited-range sensors (similarly to the example il-
lustrated in Figure 15).

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Dolgov et al. / Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments 499

Fig. 17. Best viewed in color. Examples of trajectories generated by our graph-guided planner and driven in a standard parking
lot.

6. Related Work

A* search (Hart et al. 1968) is one of the most commonly
used search techniques in motion planning. Strong evidence
of this is the fact that almost all of the DUC teams used
A* (or a variant thereof such as Stentz (1995), Ersson and
Hu (2001), Koenig and Likhachev (2002), Ferguson and
Stentz (2005), and Nash et al. (2007)) for free-space motion
planning.

Our A* heuristics are essentially identical to those inde-
pendently derived by the CMU Urban Challenge team (Urm-
son et al. 2008) and are similar to the one used by Team An-
nieway (Kammel et al. 2008). The latter used simpler heuris-
tics based on RTR (rotation-translation-rotation). In general,
such “obstacle-free” heuristics are based on the notion of non-

holonomic distance metrics (Laumond et al. 1998� LaValle
2006).

The approach of using discrete global search in combi-
nation with post-processing smoothing and the trajectory-
optimization technique is also common in motion planing (see
Choset et al. (2005) and reference therein). There is a sig-
nificant body of previous work on analytical global trajectory
optimization for obstacle-free environments (see, e.g., Scheuer
et al. (1998), Fraichard et al. (1999), and Fraichard et al.
(2001)). In environments with obstacles, the term “smooth”
is frequently used to refer to trajectories corresponding to C2

curves, i.e. with continuous derivatives, and does not reflect
our notion of having “no wiggles” (see, e.g., Bekris and
Kavraki (2007)). Global trajectory optimization in the pres-
ence of obstacles often relies on local smoothing methods by

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

500 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2010

generating trajectories from locally-smooth control actions or
geometric primitives such as splines (see, e.g., Lamiraux and
Laumond (2001) and Pivtoraiko et al. (2007)).

Most similar to our global trajectory smoothing technique
for a non-holonomic vehicle in the presence of obstacles are
the techniques used in the Grand Challenge by team Caltech
(Cremean et al. 2006) and the one used in the Urban Chal-
lenge by team Cornell (Miller et al. 2008). Caltech used a for-
mulation in the space of parametrized splines, while Cornell
used a non-parametric curve representation similar to ours,
where optimization variables are coordinates of waypoints
and associated features. Our approaches differ in the form of
the potentials responsible for kinematic-feasibility constraints
and obstacle avoidance, as well as our use of the Voronoi
field.

Potential fields (see, e.g., Andrews and Hogan (1983(@),
Pavlov and Voronin (1984), Miyazaki and Arimoto (1985),
and Khatib (1986)) are another common tool in motion plan-
ning. Navigation functions (Koditschek 1987� Rimon and
Koditschek 1992) and Laplace potentials (Connolly et al.
1990) construct fields free of local minima, which can be used
for global navigation. We did not rely on the Voronoi field
for global search, but we note that for convex obstacles, the
Voronoi field (combined with an attractive potential towards
the goal) has no local minima and can be used for global navi-
gation.

A frequent use of Voronoi diagrams in motion planning is to
compute a Voronoi skeletonization (Choset and Burdick 2000)
of the configuration space and then use the resulting graph for
path planning by either searching on the graph or using the
graph to inform heuristics. Several teams in the Urban Chal-
lenge employed similar uses of Voronoi diagrams. In partic-
ular, team Annieway (Kammel et al. 2008) used the Voronoi
diagram to inform the A* search by constructing a heuristic
where the cost of a state was the sum of the straight-line dis-
tance path to the nearest Voronoi edge and the distance along
the Voronoi diagram. Our novel contribution is in the use of
the Voronoi diagram to create the Voronoi field as described in
Section 3.3 with the properties that make it particularly suit-
able for smoothing via non-linear optimization as described in
Section 3.

Acknowledgments

We would like to thank Dirk Haehnel, Jesse Levinson, and
other members of the Stanford Racing Team for their help with
implementing and testing our planner. We would also like to
thank our colleagues Michael Samples and Michael James for
useful discussions related to this work. We also gratefully ac-
knowledge DARPA’s financial support of our team in the Ur-
ban Challenge program.

References

Andrews, J. and Hogan, N. (1983). Impedance control as a
framework for implementing obstacle avoidance in a ma-
nipulator. Control of Manufacturing Processes and Robotic
Systems, Boston: ASME: pp. 243–251.

Bekris, K. E. and Kavraki, L. E. (2007). Greedy but safe
replanning under kinodynamic constraints. International
Conference on Robotics and Automation. Piscataway, NJ,
IEEE Press, pp. 704–710.

Buehler, M., Iagnemma, K. and Singh, S. (eds) (2005). The
2005 DARPA Grand Challenge: The Great Robot Race.
Berlin, Springer.

Buehler, M., Iagnemma, K. and Singh, S. (eds) (2008a). Spe-
cial Issue on the 2007 DARPA Urban Challenge, Part I.
Journal of Field Robotics, 25(8): 423–566.

Buehler, M., Iagnemma, K. and Singh, S. (eds) (2008b). Spe-
cial Issue on the 2007 DARPA Urban Challenge, Part II,
Journal of Field Robotics, 25(9): 567–724.

Choset, H. and Burdick, J. (2000). Sensor-based exploration:
The hierarchical generalized Voronoi graph. The Interna-
tional Journal of Robotics Research, 19: 96–125.

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., Bur-
gard, W., Kavraki, L. E. and Thrun, S. (2005). Principles of
Robot Motion: Theory, Algorithms, and Implementations.
Cambridge, MA, MIT Press.

Connolly, C., Burns, J. and Weiss, R. (1990). Path planning
using Laplace’s equation. IEEE International Conference
on Robotics and Automation (ICRA), pp. 2102–2106.

Cremean, L. B., Foote, T. B., Gillula, J. H., Hines, G. H.,
Kogan, D., Kriechbaum, K. L., Lamb, J. C., Leibs, J.,
Lindzey, L., Rasmussen, C. E., Stewart, A. D., Burdick,
J. W. and Murray, R. M. (2006). Alice: An information-
rich autonomous vehicle for high-speed desert navigation.
Journal of Field Robotics, 23(9): 777–810.

Dolgov, D. and Thrun, S. (2009). Autonomous driving in semi-
structured environments: Mapping and planning. Proceed-
ings of the 2009 IEEE International Conference on Robot-
ics and Automation (ICRA-09), Kobe, Japan.

Dolgov, D., Thrun, S., Montemerlo, M. and Diebel, J.
(2008). Practical search techniques in path planning for au-
tonomous driving. Proceedings of the First International
Symposium on Search Techniques in Artificial Intelligence
and Robotics (STAIR-08), Chicago, IL. Menlo Park, CA,
AAAI.

Ersson, T. and Hu, X. (2001). Path planning and naviga-
tion of mobile robots in unknown environments. IEEE In-
ternational Conference on Intelligent Robots and Systems
(IROS).

Ferguson, D. and Stentz, A. (2005). Field d*: An interpolation-
based path planner and replanner. Proceedings of the Inter-
national Symposium on Robotics Research (ISRR).

Fraichard, T. and Ahuactzin, J.-M. (2001). Smooth path
planning for cars. Proceedings of the IEEE Interna-

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Dolgov et al. / Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments 501

tional Conference on Robotics and Automation, pp. 3722–
3727.

Fraichard, T., Scheuer, A., and Desvigne, R. (1999). From
Reeds and Shepp’s to continuous-curvature paths. Proceed-
ings of the IEEE International Conference on Advanced Ro-
botics, pp. 1025–1035.

Hart, P. E., Nilsson, N. J. and Raphael, B. (1968). A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics,
4(2): 100–107.

Hart, P. E., Nilsson, N. J. and Raphael, B. (1972). Correction to
“A formal basis for the heuristic determination of minimum
cost paths”. ACM SIGART Bulletin, 37: 28–29.

Kammel, S., Ziegler, J., Pitzer, B., Werling, M., Gindele,
T., Jagzent, D., Schröder, J., Thuy, M., Goebl, M., Hun-
delshausen, F. v., Pink, O., Frese, C., and Stiller, C. (2008).
Team Annieway’s autonomous system for the 2007 DARPA
Urban Challenge. Journal of Field Robotics, 25(9): 615–
639.

Kavraki, L., Svestka, P., Latombe, J.-C. and Overmars, M.
(1996). Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4): 566–580.

Khatib, O. (1986). Real-time obstacle avoidance for manipu-
lators and mobile robots. The International Journal of Ro-
botics Research, 5(1): 90–98.

Koditschek, D. E. (1987). Exact robot navigation by means
of potential functions: some topological considerations.
IEEE International Conference on Robotics and Automa-
tion (ICRA).

Koenig, S. and Likhachev, M. (2002). Improved fast replan-
ning for robot navigation in unknown terrain. IEEE Inter-
national Conference on Robotics and Automation (ICRA).

Koren, Y. and Borenstein, J. (1991). Potential field methods
and their inherent limitations for mobile robot navigation.
IEEE International Conference on Robotics and Automa-
tion (ICRA).

Lamiraux, F. and Laumond, J.-P. (2001). Smooth motion plan-
ning for car-like vehicles. IEEE Transactions On Robotics
and Automation, 17(4): 498–501.

Laumond, J.-P., Sekhavat, S. and Lamiraux, F. (1998). Guide-
lines in nonholonomic motion planning for mobile robots.
Robot Motion Planning and Control, Laumond, J.-P. (ed)
Berlin, Springer-Verlag, pp. 1–53.

LaValle, S. (1998). Rapidly-exploring random trees: a new tool
for path planning.

LaValle, S. M. (2006). Planning Algorithms. Cambridge,
Cambridge University Press. Also available at http://
planning.cs.uiuc.edu/.

Likhachev, M. and Ferguson, D. (2008). Planning long
dynamically-feasible maneuvers for autonomous vehicles.

Proceedings of Robotics: Science and Systems IV, Zurich,
Switzerland.

Miller, I., Campbell, M., Huttenlocher, D., Kline, F.-R.,
Nathan, A., Lupashin, S., Catlin, J., Schimpf, B., Moran,
P., Zych, N., Garcia, E., Kurdziel, M., and Fujishima, H.
(2008). Team cornell’s skynet: robust perception and plan-
ning in an urban environment. Journal of Field Robotics,
25(8): 493–527.

Miyazaki, F. and Arimoto, S. (1985). Sensory feedback for ro-
bot manipulators. Journal of Robotic Systems, 2(1): 53–71.

Nash, A., Daniel, K., Koenig, S. and Felner, A. (2007). Theta*:
any-angle path planning on grids. Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI). Menlo Park,
CA, AAAI Press, pp. 1177–1183.

Pavlov, V. and Voronin, A. N. (1984). The method of potential
functions for coding constraints of the external space in an
intelligent mobile robot. Soviet Automatic Control, 17(6):
45–51.

Pivtoraiko, M., Knepper, R. A. and Kelly, A. (2007). Optimal,
Smooth, Nonholonomic Mobile Robot Motion Planning in
State Lattices. Technical Report CMU-RI-TR-07-15, Ro-
botics Institute, Pittsburgh, PA.

Plaku, E., Kavraki, L. and Vardi, M. (2007). Discrete search
leading continuous exploration for kinodynamic motion
planning. Robotics: Science and Systems.

Reeds, J. A. and Shepp, L. A. (1990). Optimal paths for a car
that goes both forwards and backwards. Pacific Journal of
Mathematics, 145(2): 367–393.

Rimon, E. and Koditschek, D. E. (1992). Exact robot naviga-
tion using artificial potential fields. IEEE Transactions on
Robotics and Automation, 8(5): 501–518.

Rosenfeld, A. and Pfaltz, J. L. (1966). Sequential operations in
digital picture processing. Journal of the ACM, 13(4): 471–
494.

Scheuer, A. and Laugier, C. (1998). Planning sub-optimal and
continuous-curvature paths for car-like robots. Proceedings
of the IEEE-RSJ International Conference on Intelligent
Robots and Systems, pp. 25–31.

Seo, Y.-W., Ratliff, N. and Urmson, C. (2009). Self-supervised
aerial image analysis for extracting parking lot structure.
Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI-09). Menlo Park, CA, AAAI Press.

Stentz, A. (1995). The focussed d* algorithm for real-time
replanning. Proceedings of the International Joint Confer-
ence on Artificial Intelligence, pp. 1652–1659.

Tilove, R. (1990). Robotics and automation. IEEE Interna-
tional Conference on Robotics and Automation, Vol. 1,
pp. 566–571.

Urmson, C. et al. (2008). Autonomous driving in urban envi-
ronments: Boss and the urban challenge. Journal of Field
Robotics, 25(8): 425–466.

 at CAPES on July 19, 2011ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

