
Real-Time Hierarchical POMDPs for

Autonomous Robot Navigation

Amalia Foka and Panos Trahanias

Technical Report

ICS-TR347

Institute of Computer Science

Foundation for Research and Technology – Hellas (FORTH)

P.O.Box 1385, Heraklion, 711 10 Crete, Greece

January 2005

Abstract

This paper proposes a new hierarchical formulation of POMDPs for au-

tonomous robot navigation that can be solved in real-time, and is memory

efficient. It will be referred to in this paper as the Robot Navigation - Hier-

archical POMDP (RN-HPOMDP). The RN-HPOMDP is utilized as a unified

framework for autonomous robot navigation in dynamic environments. As such,

it is used for localization, planning and local obstacle avoidance. Hence, the

RN-HPOMDP decides at each time step the actions the robot should execute,

without the intervention of any other external module for obstacle avoidance or

localization. Our approach employs state space and action space hierarchy, and

can effectively model large environments at a fine resolution. Finally, the notion

of the reference POMDP is introduced. The latter holds all the information re-

garding motion and sensor uncertainty, which makes the proposed hierarchical

structure memory efficient and enables fast learning. The RN-HPOMDP has

been experimentally validated in real dynamic environments.

1 Introduction

The autonomous robot navigation problem has been studied thoroughly by the

robotics research community over the last years. Contemporary methods for

robot navigation [11, 16, 8, 9] do not considerably take into account the robot

motion uncertainty and sensor uncertainty. Yet, incorporating uncertainty in

methods for planning is crucial to their performance. Uncertainty can cause to

direct the robot in executing false actions. Probabilistic methods that integrate

uncertainty in motion planning have not been well studied until now, in con-

trast to probabilistic methods for mapping and localization. In this paper we

introduce a Hierarchical POMDP (HPOMDP) for probabilistic navigation. Our

HPOMDP formulation simultaneously addresses probabilistically all aspects of

navigation, that is motion planning, localization and local obstacle avoidance.

Partially Observable Markov Decision Processes (POMDP) provide the math-

ematical framework for probabilistic planning. POMDPs model the hidden state

of the robot that is not completely observable and maintain a belief distribution

of the robot’s state. Planning with POMDPs is performed according to the

belief distribution. Therefore, actions dictated by a POMDP drive the robot to

its goal but also implicitly reduce the uncertainty of its belief.

Although POMDPs successfully meet their purpose of use, they are in-

tractable to solve with exact methods when applied to real-world environ-

ments modelled at a fine resolution. Many approximation methods for solving

POMDPs are present in the literature and have also been applied to robotics

problems [1, 12, 21, 6, 22, 28, 4, 26]. Due to the involved computational com-

plexity, these approximation methods can only deal with problems where the

1

size of the state space is limited to at most a few thousands states. As a result,

all the approximation methods cannot model large real world environments at

a fine resolution and hence POMDPs are mainly used as high level mission

planners.

In this paper, we propose a hierarchical representation of POMDPs for au-

tonomous robot navigation (RN-HPOMDP) that can effectively model large real

world environments at a fine resolution. Moreover, the proposed RN-HPOMDP

can be solved in real time. It is utilized as a unified framework for autonomous

robot navigation, implying that no other external modules are used to drive

the robot. RN-HPOMDP integrates the modules for localization, planning and

local obstacle avoidance; it is solved on-line at each time step and decides the

actual actions the robot performs.

In Section 2, the necessary theoretical background for POMDPs is given

followed by the formulation of each element of a POMDP for the autonomous

robot navigation problem in Section 3. In Section 4 the structure of the RN-

HPOMDP is presented. The methodoly used for learning and planning with

the RN-HPOMDP is presented in Sections 5 and 6, respectivelly.

Two other HPOMDP approaches are currently present in the literature that

employ either state space hierarchy [27], applied as a high level mission planner,

or action and state space hierarchy [18], applied for high level robot control

and dialogue management. Independently and concurrently with these works,

we have come up with a HPOMDP1 that applies both state space and action

space hierarchy. It is specifically designed for the autonomous robot navigation
1Preliminary versions of our HPOMDP are presented in [2, 3].

2

problem, hence the term RN-HPOMDP, and offers specific advantages over the

two approaches mentioned above. A comparison between the RN-HPOMDP

and the other previously mentioned approaches is presented in Section 7. Ex-

perimental results, presented in Section 8, have shown the applicability of the

RN-HPOMDP for autonomous robot navigation in large real world and dynamic

environments where humans and moving objects are effectively avoided and the

robot follows optimal paths to reach its destination. Finally, this paper’s con-

clusions and future work directions are presented in Section 9.

2 Partially Observable Markov Decision Processes

(POMDPs)

POMDPs are a model of an agent interacting synchronously with its environ-

ment. The agent takes as input the state of the environment and generates as

output actions, which themselves affect the state of the environment. In the

POMDP framework, a system acting in the world is not guaranteed at any time

to know the state of the world, i.e. which state of the environment it occupies.

Hence, states are partially observable.

Formally, a POMDP is a tuple M =〈S,A, T ,R,Z,O〉, where

• S, is a finite set of all possible states of the environment that the agent

might occupy and are partially observable.

• A, is a finite set of actions.

• Z, is a finite set of observations.

3

• T : S ×A → Π(S) is the state transition function, giving for each state

and agent action, a probability distribution over states. T (s, a, s′) is the

probability of ending in state s′, given that the agent starts in state s and

takes action a, p(s′|s, a). The distribution over the state space depends

only on the current state-action pair and not on previous state-action

pairs. This requirement ensures the Markov property of the process.

• R : S ×A → R is the reward function, giving the expected immediate

reward gained by the agent for taking an action a when it is in state s,

R(s, a).

• O : A× S → Π(Z) is the observation function giving for each state and

agent action, a probability distribution over observations. O(s′, a, z) is

the probability of observing z, in state s′ after taking action a, p(z|s′, a).

2.1 Belief State

A POMDP agent is composed of two components [27]: the state estimator com-

ponent and the policy component. The state estimator component maintains

at all times the belief state bt of the agent. The belief state is a discrete prob-

ability distribution over the set of environment states, S, representing for each

state the agent’s belief that is currently occupying that state. Hence, bt(s) is

the probability of the agent being in state s at time t, pt(s : s ∈ S). The set

of all possible belief states is B. The state estimator updates the belief state of

the agent every time it executes an action based on the action it executed and

the observation it perceived as explained in Section 2.2. The policy component

maps a belief state to an optimal action as explained in Section 2.3.

4

2.2 Belief Update

The state estimator component of a POMDP updates the belief state of the

agent every time it executes an action. Given the belief state of the agent at

time t, bt, we would like to compute the belief state at time t + 1, bt+1, after

a transition in the process where the agent occupies state s, executes an action

a and perceives an observation z. The belief that the agent is in the resulting

state s′ is derived by:

bt+1(s′) = P (s′|z, a, bt)

=
P (z|s′, a, bt)P (s′|a, bt)

P (z|a, bt)

=
P (z|s′, a, bt)

∑
s∈S P (s′|a, bt, s)P (s|a, bt)
P (z|a, bt)

=
P (z|s′, a)

∑
s∈S P (s′|s, a)P (s|bt)
P (z|a, bt)

=
O(s′, a, z)

∑
s∈S T (s, a, s′)bt(s)

P (z|a, bt)

In essence the above equation evaluates the probability of ending up in state

s′ given that the agent had a belief about its own state bt, executed an action

a and perceived an observation z according to the predefined observation and

transition functions of the POMDP, O(·) and T (·) respectively. The denomi-

nator P (z|a, bt), is a normalizing factor and is equal to the total probability of

perceiving the observation z given the previous belief state of the agent and the

action it executed :

5

P (z|a, bt) =
∑

s′∈S

P (z|s′, a)P (s′|s, a)bt(s)

=
∑

s′∈S

O(z, s′, a)T (s, a, s′)bt(s)

2.3 Solving POMDP’s

Solving a POMDP amounts to computing an optimal policy. A policy is a

mapping that specifies the action the agent should execute for any possible

state that it might occupy. In a POMDP formulation, the true state the agent

occupies is never completely known since the agent maintains a belief over all

possible states. Therefore, the computed policy provides a mapping of belief

states to actions.

The optimal action to be executed when the agent occupies a state st, is the

one with the maximum expected accumulated reward,

E

[∑
t

γtR(st, at)

]
,

where γ is a discount factor that determines how important are the future

rewards the robot will receive. If γ is zero, the robot will maximize the reward

it will receive for the next time step only. The expected accumulated reward

can be computed either for a specific number of steps, the finite horizon case,

or until the agent reaches the goal state, the infinite horizon case.

The function that maps each state of the belief to the corresponding expected

accumulated reward is called a value function. The t-step optimal value function

6

[15] is constructed iteratively by value iteration. In the case of Markov Decision

Processes (MDPs), where the agent’s state is fully observable, the t-step optimal

value function is formulated as:

V ∗
t (s) = max

a∈A

[
R(s, a) + γ

∑

s′∈S
T (s, a, s′)Vt−1(s′)

]
.

However, in POMDPs where the agent’s state is partially observable, the

value function has to be defined over the whole belief state instead of a single

state as in MDPs. Hence, for POMDPs the the t-step optimal value function

becomes:

V ∗
t (b) = max

a∈A

[
ρ(b, a) + γ

∑

b′∈B
τ(b, a, b′)Vt−1(b′)

]
,

where B is the set of all possible belief states.

As can be observed in the above equation, the defined transition, T (·), and

reward, R(·), functions have been replaced by the functions τ(·) and ρ(·), respec-

tively. This is because the transition and reward functions have to be defined

over a belief state, b, instead of a single state, since the true state of the agent

is not completely known. Hence, the new functions are defined as:

τ(b, a, b′) = P (b′|a, b)

and

ρ(b, a) =
∑

s∈S

b(s)R(s, a).

The iterative construction of the optimal value function over the set of all

7

possible belief states B is an extremely computational expensive procedure. It

has been shown that finding an exact solution of a POMDP with infinite horizon

is intractable [13]. Therefore, a number of techniques have been proposed for

approximating the value function. Many approximation methods are based on

solving the underlying fully observable Markov Decision Process (MDP) [25,

1, 12]. More recent approximation methods are those based on state-space

compression [21], belief compression [24] and point-based value iteration where

the POMDP is solved for a sampled set of belief points [4, 22, 26, 6].

Two very commonly used MDP-based heuristics for approximating the value

function are the most likely state (MLS) heuristic [25] and the QMDP approxi-

mation [12]. The MLS heuristic solves the underlying MDP for the state with

the highest assigned probability. Therefore, the value function becomes:

V ∗
t (s) = max

a∈A

[
R(s, a) + γ

∑

s′∈S
T (s, a, s′)Vt−1(s′)

]
.

The QMDP method solves again the underlying MDP by defining the Q-

functions as:

Qt(s, a) = R(s, a) + γ
∑

s′∈S
T (s, a, s′)Vt−1(s′),

and the optimal value function is then determined by:

V ∗
t (b) = max

a∈A

[∑

s∈S

b(s)Qt(s, a)

]
.

All of the approximation methods mentioned above have been applied suc-

cessfully to problems with at most a few thousand states. However, the nav-

igation problem in realistic environments, i.e. the problem considered in this

paper, is orders of magnitude larger than these approximation methods can

8

handle, and hence in this paper a hierarchical representation of POMDPs for

robot navigation is proposed.

3 Formulation of POMDPs for the Autonomous

Robot Navigation Problem

In the following we present a formulation of POMDPs for autonomous robot

navigation in a unified framework. The POMDP decides the actions the robot

should perform to reach its goal and also robustly tracks the robot’s location

in a probabilistic manner. In this paper, we are interested in dynamic envi-

ronments and hence the POMDP also performs obstacle avoidance. All three

functionalities are carried out without the intervention of any other external

module.

The elements of the POMDP, 〈S,A, T ,R,Z,O〉, are instantiated as follows:

set of states, S: Each state in S corresponds to a discrete entry cell in the

environment’s occupancy grid map (OGM) and an orientation angle of

the robot with respect to a global reference system.

set of actions, A: It consists of all possible rotation actions from 0◦ to 360◦

termed as “action angles”. The discretization of the robot orientation

angles and action angles depends on the number of levels of the POMDP

hierarchy (see later Section 4).

set of observations, Z: The observation set is the element of the POMDP

that assists in the localization of the robot, that is the belief update after

9

an action has been taken. The set of observations is instantiated as the

output of the iterative dual correspondence (IDC) [14] algorithm for scan

matching. At each time step, an observation is obtained by feeding the

IDC with the current scan of the robot and a reference scan of the envi-

ronment in which the robot operates. The IDC also requires an estimate

of the robot’s position from which the current scan was obtained, which is

given as the robot’s position before it performed the action. This position

is taken to be the most likely state of the robot’s belief state. It is reason-

able to assume that the robot cannot move too far from its previous state

at a single time step. Therefore, the output of the IDC algorithm, that

is the dx, dy and dθ from the estimated location provided, will be within

certain limits. The output of the IDC algorithm is discretized and thus

the set of observations remains small and manageable.

reward function, R: Since the proposed POMDP is used as a unified frame-

work for robot navigation that will provide the actual actions the robot will

perform and also carry out local obstacle avoidance for moving objects,

the reward function is updated at each time step. The reward function is

built and updated at each time step, according to two reward grid maps

(RGMs): a static and a dynamic [2]. The RGM is defined as a grid map of

the environment in analogy with the OGM. Each of the RGM cells corre-

sponds to a specific area of the environment with the same discretization

of the OGM, only that the value associated with each cell in the RGM

represents the reward that will be assigned to the robot for ending up in

the specific cell. The static RGM is built once by calculating the distance

of each cell to the goal position and by incorporating information about

10

cells belonging to static obstacles. The dynamic RGM is responsible for

incorporating into the model information about the current state of the

environment, i.e. whether there are objects moving within it or other

unmapped objects. In our implementation the robot perceives the envi-

ronment by taking horizontal laser scans. Hence, at each time step the

current laser scan is used to detect the location of objects that are not

present in the map. The location of all detected objects form the dynamic

RGM where the corresponding cell values are zeroed. Superimposing the

static and dynamic RGMs provides the reward function that is updated

at each time step. It should be noted that the choice of including in the

reward function information about moving objects has alleviated the need

of modelling moving objects as observations. Modelling the position of

moving objects as observations would increase dramatically the size of ob-

servations since it would have to be at least equal to the size of the grid

of the modelled environment.

transition and observation functions, T and O: They are initially defined

according to the motion model of the robot and then they are learned as

explained in Section 5. Since observations have been defined to depend

only on the robot motion when an action is executed, the observation

function can also be defined according to the motion model.

11

4 The Robot Navigation-Hierarchical POMDP

(RN-HPOMDP)

HPOMDPs have been recently studied and two approaches have been proposed

by Theocharous [27] and Pineau [23, 18]. Our approach to HPOMDP has been

developed independently and concurrently with these two approaches and pre-

liminary versions of it have been presented in [2, 3]. POMDP solution methods

suffer from the “curse of dimensionality” [7] and also the “curse of history” [4].

Applying both state space and action space hierarchy, as in the RN-HPOMDP,

both curses can be harnessed. In the following we present the structure of the

RN-HPOMDP along with the methodoly used for learning and planning with

the RN-HPOMDP in Sections 5 and 6, respectivelly. A detailed comparison

of our approach and the other two approaches present in the literature can be

found in Section 7.

4.1 RN-HPOMDP structure

The RN-HPOMDP is built through an automated procedure using as input the

map of the environment and the desired discretization of the state and action

space. The map of the environment can be either a probabilistic grid map

obtained at the desired discretization or a CAD map.

12

4.1.1 Determining the number of levels of hierarchy of the RN-

HPOMDP

The RN-HPOMDP structure is built by decomposing a flat POMDP with large

state and action space into multiple POMDPs with significantly smaller state

and action spaces. Therefore, in levels other than the bottom level, POMDPs

are composed of states and actions that have a coarse discretization and do

not represent that actual state the robot occupies or the actual action the robot

will perform. Hence they are termed as abstract states and abstract actions [27].

The process of building the hierarchical structure is performed in a top-down

approach. The number of levels of the hierarchical structure is determined by the

desired discretization of the action angles or the orientation angles, since their

discretization is the same in the RN-HPOMDP structure. The discretization of

the orientation and action angles has been chosen to be the same in the RN-

HPOMDP structure but this is a designer’s choice and is not compromising as

it does not affect the performance of the RN-HPOMDP. Thus, if the desired

discretization of the action angles or the orientation angles is φ, the number

of levels of the RN-HPOMDP structure, L, will be L = log2(90◦/φ) + 1. As

explained in the following sections, the top-level of the RN-HPOMDP has a

discretization of angles of 90◦ and at each subsequent level the discretization is

doubled. Hence, the number of levels of the hierarchical structure is given by

the log2 of the ratio of the top-level discretization and the desired discretization

plus one level that is the top-level.

The number of levels of the RN-HPOMDP structure in conjunction with the

desired discretization of the state space affects the size of the top-level POMDP

13

and in effect the performance of the RN-HPOMDP in time complexity as it

will be explained in the following sections. Therefore, the choice of the number

of levels of the RN-HPOMDP structure should be made by considering the

desired discretization of the state and action space but also the resulting size of

the top-level POMDP.

4.1.2 Construction of the top-level of the RN-HPOMDP

The top level of the hierarchical structure is composed of a single POMDP with

very coarse resolution. Hence it can represent the whole environment with a

small number of abstract states. The grid resolution of the top level states

is equal to d × 2L−1, where d is the desired discretization of the whole RN-

HPOMDP structure and L is the number of levels of the structure. The orienta-

tion angle of the robot and the action angles are also discretized in a very coarse

resolution of 90◦ and thus represent the basic four directions [0◦, 90◦, 180◦, 270◦].

The total number of states of the top level POMDP is equal to |S0|/22(L−1),

where |S0| is the number of states of the corresponding flat POMDP. The num-

ber of states of the top level POMDP is reduced once by 2L−1 because of the

coarser grid resolution and again by 2L−1 because of the coarser resolution of the

orientation angle, as compared to the corresponding flat POMDP respectively.

To summarize, the top-level is always composed of a single POMDP with

predefined discretization of the orientation and action angles at 90◦. The state

space size of the top-level POMDP is variable and dependent to the discretiza-

tion of the corresponding flat POMDP and the number of levels of the hierar-

chical structure. Hence, the number of levels of the HPOMDP structure, L,

14

should be such that it ensures that the size of the top-level POMDP remains

small.

4.1.3 Construction of the intermediate levels of the RN-HPOMDP

Subsequent levels of the HPOMDP are composed of multiple POMDPs, each one

representing a small area of the environment and a specific range of orientation

angles. The actions of an intermediate level POMDP are a subset of the actions

of the corresponding flat POMDP.

In detail, each state of the top level POMDP corresponds to a POMDP at the

immediate next level, as we go down the hierarchical structure. A POMDP at an

intermediate level l, has states that represent grid locations of the environment

at a resolution of d× 2(L−l), where l is the current intermediate level. Thus, by

going down the hierarchical structure the grid resolution of a level’s POMDP is

twice the resolution of the previous level. Therefore, when a top level state, that

corresponds to a specific grid location, is decomposed it will be represented in

the immediate next level POMDP by an area of 2×2 cells with double resolution

than the top level’s resolution.

Orientation angle decomposition

Going down the hierarchical structure, the resolution of the orientation angle

is also doubled. Since the resolution of the orientation angle is increased as

we go down the hierarchical structure, the whole range of possible orientation

angles, [0◦, 360◦], cannot be represented in every intermediate level POMDP.

This would dramatically increase the size of the state space and therefore we

15

Figure 1: State space hierarchy decomposition. The figure depicts the decom-

position of a top level state to lower level states. The top level state corresponds

to 4 POMDPs at level 2, each one decomposing the location of the top level

state into 4 locations, and its orientation in one of the ranges denoted by the

shaded region of the circles for each POMDP. This state decomposition contin-

ues at lower levels until the desired discretization of the environment has been

reached.

choose to have many POMDPs that represent the same grid location but with

a different range of orientation angles.

The range of orientation angles that is represented within each intermediate

level POMDP is expressed in terms of the orientation angle, θp, of the previous

level state that is decomposed, and is equal to

[
θp − 90◦

2l−2
, θp +

90◦

2l−2

]
,

where l is the current intermediate level. By the above expression of the range

of orientation angles, every intermediate level POMDP will always have five

16

distinct orientation angles. For example, if the state of the top level POMDP,

l = 1, has orientation angle θp = 90◦, the range of orientation angles at the

next level, l = 2, will be equal to [0◦, 180◦]. As mentioned earlier the angle

resolution of the top level is always equal to 90◦ and the next level will have

double resolution, i.e. 45◦. Therefore, the range of orientation angles [0◦, 180◦]

will be represented by five distinct orientation angles. As shown in Figure 1,

the grid location represented by the top level state is decomposed into four

POMDPs, where each one represents a different range of possible orientation

angles. Consequently, the size of the state space for every intermediate level

POMDP is constant and equal to 20, since it always has five possible orientation

angles and it represents a 2×2 area of grid locations. It is easily deduced by the

expression that determines the range of orientation angles for an intermediate

level POMDP, that a grid location represented by a state will correspond at the

next level l to 22(l−1) POMDPs.

Action angle decomposition

Action angles are decomposed from the top level POMDP to the next inter-

mediate level in the same manner as with the orientation angles. The resolution

of the action angles at each level is the same as the resolution of the orientation

angles. Hence, it is equal to 90◦/2l−1. As a result, a top level state is also de-

composed into multiple POMDPs, each one with a different range of orientation

angles but also with a different range of action angles. The range of an action

set is equal to [
ap − 90◦

2l−2
, ap +

90◦

2l−2

]
,

where ap is the previous level action and l is the current intermediate level. The

17

action angles set is also always composed by five distinct actions according to

the above expression.

4.1.4 Construction of the bottom-level of the RN-HPOMDP

The procedure described in the previous section is used to built all intermediate

levels of the hierarchical structure until the bottom level is reached. Bottom

level POMDPs’ state and action space is discretized at the desired resolution as

a flat POMDP would be discretized. The bottom level is composed of multiple

POMDPs having the same properties as all other intermediate levels’ POMDPs,

only that the grid location the bottom level POMDPs represent is overlapping

by a region r. Overlapping regions are required to be able to solve the bottom

level POMDPs for border location states. Table 1 summarizes the properties of

the RN-HPOMDP structure.

4.2 The reference POMDP (rPOMDP)

The RN-HPOMDP described in the previous section, can cope with the com-

putational time requirements but cannot address the memory requirements. A

flat POMDP would require to hold a transition matrix of size (|S0|2 × |A0|)

and an observation matrix of size (|S0| × |A0| × |Z|), where |S0| and |A0| are

the size of the state space and action space, respectively, of the flat POMDP.

The size of the observation space, |Z|, is the same for the flat POMDP and the

RN-HPOMDP since there is no observation space hierarchy.

The RN-HPOMDP structure requires to hold the transition and observation

matrices for all the POMDPs at all levels. As can be seen in Table 1, the number

18

Table 1: Properties of the RN-HPOMDP structure with L levels.

Top Level Intermediate Level l Bottom Level

No of POMDPs 1 |Al−1| × |Sl−1| |AL−1| × |SL−1|

Size of S |S0|/22(L−1) 20 5× (2 + r)2

Range of [0◦, 360◦]
[
θp − 90◦

2l−1 , θp + 90◦
2l−1

] [
θp − 90◦

2L−1 , θp + 90◦
2L−1

]

orientation angles

Resolution of 90◦ 90◦/2l−1 90◦/2L−1

orientation angles

Size of A 4 5 5

Range of [0◦, 360◦]
[
ap − 90◦

2l−2 , ap + 90◦
2l−2

] [
ap − 90◦

2L−2 , ap + 90◦
2L−2

]

action angles

Resolution of 90◦ 90◦/2l−1 90◦/2L−1

action angles

19

of POMDPs at each level is large and dependent on the size of action space and

state space. Consequently, even thought each POMDP’s observation and trans-

lation matrix is small, the total memory requirements would be extremely large.

The RN-HPOMDP has larger memory requirements than the flat POMDP, al-

though the flat POMDP memory requirements are already very hard to manage

for large environments. For this reason, the notion of the reference POMDP

(rPOMDP) is introduced.

The transition and observation matrices hold probabilities that carry infor-

mation regarding the motion and sensor uncertainty. In the formulation of the

autonomous robot navigation problem with POMDPs, as described in Section

3, transition and observation probabilities for a given action, a, and an obser-

vation, z, depend actually only on the relative position and orientation of the

robot.

The transition probability of a robot from a state s to a new state s′, when

it has performed an action a, is only dependent on the action a. Therefore when

the robot is executing an action a, the transition probability will be the same

for any state s when the resulting state s′ is defined relatively to the initial state

s.

The probability that the robot observes a feature z, when it is in a state

s and performs an action a, can also be defined in the same manner as with

the transition probabilities, since the set of features Z is the result of the scan

matching algorithm when feeded with a reference laser scan and the actual scan

the robot perceived (cf. Section 3). Therefore, perceived features are dependent

on the motion of the robot, i.e. the action a it performed.

20

The rPOMDP is built by defining a very small state space, defined as an

R×R square grid (in our implementation R = 7) representing possible locations

of the robot and all the orientation angles of the robot that would be assigned in

the flat POMDP. The center location of the state space represents the invariant

state sr of the robot. The action and observation spaces are defined in the

same manner they would be defined for the corresponding flat PODMP. This

rPOMDP requires to hold transition and observation matrices of size ((R ×

22+L)2 × |A|) and ((R × 22+L)2 × |A| × |Z|), respectively. The size of the

matrices is only dependent on the size of the set of actions and observations

and the number of levels of hierarchy, L, since the number of levels defines the

discretization of the robot’s orientation angle. By the above, it is obvious that

no matter how big is the environment that is to be modelled with the RN-

HPOMDP the use of the rPOMDP allows to have reasonably sized matrices,

depending on the choice made for R, that are easy to maintain and learn.

Given the rPOMDP, transition and observation probabilities for each POMDP

in the RN-HPOMDP hierarchical structure are obtained by translating and ro-

tating the reference transition and observation probability distributions over the

current POMDP state space, as shown in Figure 2. The transfer of probabilities

is performed on-line while a POMDP is solved or the robot’s belief is updated.

The transition probability for any POMDP of the hierarchical structure,

T (s, s′, a), is equivalent to the transition probability of the rPOMDP, Tr(sr, s
′
r, ar).

The reference result state, s′r, is determined by the following equation:



x′r

y′r

f ′r




=




xr

yr

fr




+




x′ − x

y′ − y

f ′ − f




,

21

Figure 2: Translation and rotation of the reference POMDP transition proba-

bilities matrix.

where, the states s, s′, sr and s′r are decomposed to the location and orienta-

tion triplets (x, y, f), (x′, y′, f ′), (xr, yr, fr) and (x′r, y′r, f ′r), respectively. The

reference action is determined by ar = a + f − fr.

In the same manner, the observation probability for any POMDP of the

hierarchical structure, O(s, z, a), is equivalent to the observation probability of

the rPOMDP, Or(sr, zr, ar). The reference observation, z′r, is now determined

as: 


dxr

dyr

dfr




=




d cos(fr + ar)

d sin(fr + ar)

df




,

where the observations z and zr are decomposed into (dx, dy, df) and (dxr, dyr, dfr),

respectively, since observations are defined as the position and angle difference

between laser scans, and d is the distance d =
√

dx2 + dy2.

22

5 RN-HPOMDP learning

Since a POMDP is a probabilistic model, learning the parameters of this model,

i.e. the transition and observation matrices, is crucial to the performance of the

POMDP model and specifically to its performance in keeping track of the robot’s

true position and orientation.

In our proposed HPOMDP structure, learning is performed only for the

reference POMDP, since the latter transfers its learned parameters to the whole

hierarchical structure, as described in Section 4.2.

Learning the POMDP parameters is performed by initializing the probability

matrices and adjusting their parameters iteratively according to an execution

trace, that is composed of action and observation pairs, to maximize the like-

lihood that the execution trace was obtained by the model. The Baum-Welch

[10] algorithm is utilized for this purpose.

Since learning is performed only for the rPOMDP, when collecting data for

the execution trace the observation and action pairs are converted to reference

observations and actions. Conversion is performed by the inverse procedure

described in Section 4.2. Consequently, learning is performed very fast since

the rPOMDP has a very small state space.

5.1 Evaluation of the learned model

In order to test the validity of the learning procedure, we have set up an ex-

periment aiming at a quantitative evaluation of the model that results from a

learning session in specific environments. Two learning sessions have been per-

23

formed; a learning session in a simulated environment where the ground truth is

available and also one in a real environment. The environment chosen for both

experiments is the FORTH main entrance hall, as shown in Figure 4.

In both experiments, execution traces have been collected where the robot

goes from a start state to a goal state. The start and goal states were different

for each execution trace. The RN-HPOMDP for both experiments was built

by discretizing the environment into 5cm2 cells with 5 levels of hierarchy, that

results to a discretization step of the orientation and action angles of 5.625◦.

The model “appropriateness” has been evaluated using the fitness and entropy

measures defined in [10] as:

fitness = 1/T × ln p(o1...T |a1...T)

entropy = 1/(T ln |S|)×
∑

t=1...T

∑

s∈S

[αt(s) ln(αt(s))].

Fitness and entropy are indicative measures of how well the model explains

an execution trace and how certain the robot is about its position, respectively.

The Baum-Welch algorithm is repeated for a number of epochs until it converges.

The fitness and entropy measures are graphically shown in Figure 3 for each

training epoch. Ideally, fitness and entropy should converge to zero after a

sufficiently large number of training epochs. As expected, convergence to zero

is not achieved, as its the case with all learning procedures. Still, after a rather

small number of epochs, fitness and entropy converge to low values, indicating

the validity of the learned model.

In order to provide additional quantitative results on the model accuracy, the

position and orientation accuracy in maintaining the robot’s state was measured

and is shown in Table 2. The peak of the POMDP’s belief distribution was used

24

as the model’s estimate of the robot’s current state. As can be observed, the

figures indicate increased accuracy of the learned model.

In the simulated environment experiments, where the ground truth is avail-

able, the position and orientation errors were measured at each time step during

execution between start and goal points.

In the real environment experiments, two distinct robot locations were man-

ually marked on the floor of the FORTH main entrance hall, as shown in Figure

4. The robot was driven manually, as accurately as possible, to one of the

marked locations and the other marked location was set as the goal position the

robot had to reach. The error in the x, y location and orientation between the

robot’s position after executing the trace obtained by the POMDP model and

the marked location it had to reach, was measured manually as accurately as

possible.

The mean position and orientation error for both experiments is very close

to the discretization of the POMDP, as indicated by the entropy and fitness

measures of the learned models. Both experiments, validated that the learned

POMDP models were consistent during execution in terms of maintaining the

robot’s belief and also in reaching the goal position.

6 RN-HPOMDP planning

Solving the RN-HPOMDP to obtain the action the robot should perform, in-

volves solving a POMDP at each level. The intuition of the RN-HPOMDP

solution is to obtain at first a coarse path that the robot should follow to reach

25

Figure 3: Evaluation of the learned RN-HPOMDP model.

Table 2: Position and orientation accuracy of the learned model.

Mean Error Real Environment Simulated Environment

x(m) 0.053 0.023

y(m) 0.061 0.041

f(deg) 5.525 5.041

Figure 4: The marked locations in the environment where the experimental

evaluation of the RN-HPOMDP model was performed.

26

a goal position, and then refine this path at each subsequent level in the area

that the robot’s current position lies. The algorithm that implements the above

is presented in Table 3 and its details are explained in the following.

During the RN-HPOMDP planning procedure the belief distribution of the

corresponding flat POMDP is maintained at all times. This distribution will be

denoted as the full belief. Before solving any POMDP at any level, the full belief

is compressed, by the functions compressTopBelief() and compressBelief(),

to obtain the belief distribution of the POMDP to be solved. Belief compression

is performed according to the state abstraction present at each level of the RN-

HPOMDP structure, i.e. the discretization reduction of each level as compared

to the the discretization of the corresponding flat POMDP. Therefore, the belief

assigned to an abstract state, a state with coarse discretization at any level of the

hierarchical structure other than the bottom level, will correspond to the average

belief of all the corresponding flat POMDP states that the named abstract state

has integrated. The belief distribution obtained for any POMDP is normalized

before solving it.

The top level POMDP is solved, by the function solveTopLevel(), at an

infinite horizon, until the goal state is reached. The top level POMDP produces

abstract actions, i.e. actions at a coarse resolution that infer only the general

direction the robot should follow and not the actual action it will perform. The

abstract action to be executed, ap, as dictated by the top level POMDP solu-

tion, determines which POMDP at the immediate next level of the hierarchical

structure will be solved to obtain a new refined abstract action, that has a finer

discretization but still it is not the actual action the robot will perform.

27

Table 3: RN-HPOMDP planning

while not reached the goal state

compressTopBelief(top level)

ap = solveTopLevel(top level)

for l = 2 to L

whichPOMDP = selectPOMDP(l, ap)

compressBelief(l, whichPOMDP)

ap = solveLevel(l, whichPOMDP)

end

executeAction(ap)

z = getObservation()

beliefL = updateBelief(whichPOMDP, ap, z)

full belief = updateFullBelief(beliefL, whichPOMDP)

end

28

The POMDP to be solved at the next level is determined by the function

selectPOMDP(). This function searches a level l for the POMDP among all

POMDPs in that level that satisfies the following two criteria:

• The zero moment of the full belief distribution over the area that is defined

by the candidate POMDP states is maximum.

• The set of actions of the candidate POMDP contains an action that has

minimum distance from the the previous level solution’s action, ap.

The structure of the RN-HPOMDP, as described in Section 4, ensures that

when solving an intermediate level POMDP the action obtained from the pre-

vious level will be refined to a new action since the action subset range is equal

to [
ap − 90◦

2l−2
, ap +

90◦

2l−2

]
.

Therefore the solution of an intermediate level POMDP is bounded according

to the previous level solution.

The described procedure continues until the bottom level is reached where

an abstract action will be refined to an actual action, that is the action the

robot will perform.

When the robot executes the action obtained by the bottom level POMDP

solution, an observation, z, is obtained and the belief distribution of this bot-

tom level POMDP is updated by updateBelief(). Bottom level POMDPs are

composed of actual states and actions, i.e. subsets of states and actions that

compose the corresponding flat POMDP. Hence, updating the belief of a bottom

level POMDP, beliefL, amounts to updating a specific region of the full belief.

29

Figure 5: Planning with the RN-HPOMDP.

Therefore, the belief distribution of the bottom level POMDP that was solved

is transferred to the full belief by the function updateFullBelief().

In the current implementation, all POMDPs at all levels are solved using

the Voting heuristic (explained in Section 2.3). However, this is not an inherent

feature of the RN-HPOMDP structure, as any other POMDP solution method

can be used. Furthermore, the POMDP solution method used can also be

different for each level of the hierarchical structure.

6.1 Complexity Analysis

In the complexity analysis that follows, execution times are evaluated for the

POMDP solution using exact methods and heuristics. The Voting or MLS

heuristic, that have the same complexity, will be assumed as the heuristic used

30

for solving the POMDP. This will assist in the comparison between the RN-

HPOMDP and the other hierarchical approaches present in the literature that

use the above mentioned heuristics. As already mentioned, in our implementa-

tion the Voting heuristic is used to solve POMDPs at all levels.

6.1.1 Approximate Solution

The flat POMDP solution - when solved with the MLS or Voting heuristic

- has time complexity for a single step, O
(|S|2|A|). This makes the POMDP

solution intractable when dealing with real world environments at an acceptable

resolution, e.g. having more than 10 million states as in our application.

Obtaining a solution by the RN-HPOMDP can dramatically improve the

computation time required. Referring to Table 1, where the properties of the

RN-HPOMDP structure are detailed, the solution of the top level POMDP

requires

O

((|S|
22(L−1)

)2

× 4

)

computational time, where L is the number of levels of the hierarchical structure.

The solution of all intermediate levels POMDPs requires O(C1) time, since

the size of the state space and action space is constant and predefined. The

bottom level POMDP solution is O(C2), since the state space and action space

is again constant and predefined.

Therefore, the total computational time required to solve the RN-HPOMDP

is

O

((|S|
22(L−1)

)2
)

+ (L− 2)×O (C1) + O (C2) ,

31

which becomes

O

((|S|
22(L−1)

)2
)

,

that is actually the complexity of the top level POMDP. The top-level POMDP

state and action space size can remain small regardless of the size of the whole

environment by increasing the number of levels, L, of the hierarchical structure.

6.1.2 Exact Solution

When solving the POMDP exactly for a single step in time t, the time complexity

is

O
(
|S|2|A||Vt−1||Z|

)
,

where |Vt−1| is the number of linear components required to represent the value

function at time t− 1. The size of the value function at any time t is equal to

|Vt| = |A||Vt−1||Z|.

As explained previously, the time complexity of solving the RN-HPOMDP

is equal to the time complexity of solving the top level POMDP. The top level

POMDP of our hierarchical structure has reduced state space and is equal to
(

|S|
22(L−1)

)
, where L is the number of levels. Furthermore, the action space is

constant and equal to four. Therefore, the time complexity and size of the

RN-HPOMDP when solved exactly is

O

((|S|
22(L−1)

)2

|Vt−1||Z|
)

and

|Vt| = |Vt−1||Z|,

32

respectively.

Apart from the notable reduction in computation time due to the reduced

size of the state and action space, it should be noted that the above mentioned

times are for a single time step. The infinite horizon solution of a flat POMDP

would require these computations to be repeated for a number N of time steps

until the goal point is reached, that is dependent on the number of states of

the flat POMDP, |S|. In the RN-HPOMDP case, only the top level POMDP

is solved at an infinite horizon, and the number of time steps N ′ until the goal

point is reached, is now dependent on the number of states of the top level

POMDP, (|S|/22(L−1)).

From the above complexity analysis, we may conclude that the proposed

approach takes care of the “curse of dimensionality” [7] and also the “curse of

history” [4].

7 Comparison with other HPOMDP structures

In this section we compare the RN-HPOMDP against the other two HPOMDP

approaches present in the literature, in terms of time complexity for solving the

HPOMDP, state space and action space abstraction methodology, and the appli-

cation framework of the HPOMDP. Finally, a comparison of the RN-HPOMDP

and the most recent approximation methods for solving a flat POMDP is pre-

sented.

33

7.1 Comparison with the Theocharous approach

The Theocharous [27] approach uses a topological map of the environment where

the state abstraction in high levels of the HPOMDP, has a physical meaning

based on the environment. Thus, abstract states are manually defined such that

they represent a corridor or a junction. On the other hand, the RN-HPOMDP is

built through an automated procedure that requires as input only a probabilistic

occupancy grid map or a CAD map of the environment.

The Theocharous HPOMDP has been used as a high-level planner where

the POMDP is solved once to obtain the shortest path to the goal position.

As a result, the state space resolution is set to 2m2 and the action space is

discritized at a resolution of 90◦. Our approach models the environment at a

fine resolution (e.g. 5cm2) and the action resolution can be discretized up to 1◦

based on the number of levels of hierarchy. Finally, the RN-HPOMDP is used as

a global planner that is solved at each time step to provide the actual actions the

robot will perform without the intervention of any other intermediate modules.

The RN-HPOMDP integrates the modules for planning, localization and local

obstacle avoidance.

The Theocharous approach, uses the MLS heuristic and has time complex-

ity between O(|S| 2d N |A|)(see 2) and O(|S|2|A|)(see3), based on how well the

HPOMDP was constructed. The time required to solve the RN-HPOMDP is
2d is the depth of the tree and N is the maximum number of entry states for an abstract

state.
3The size of the action space |A| was added in the time complexity of the Theocharous

approach, so that the comparison with the complexity of a flat POMDP and our approach

can be direct, although in their approach |A| is constant and equal to 4.

34

O((|S|/22(L−1))2), hence the complexity reduction of our approach is signifi-

cantly greater and also is not dependent on any quality measure of the hierar-

chical structure.

7.2 Comparison with the Pineau approach

In the Pineau HPOMDP approach [18], actions are grouped into abstract actions

called subtasks. Subtasks are defined manually and according to them state

abstraction is performed automatically. States that have the same reward value

for executing any action that belongs to a predefined subtask are clustered.

Observation abstraction is performed by eliminating the observations that have

zero probability over all state clusters for that actions belonging to a specific

subtask.

Planning with the Pineau HPOMDP involves solving the POMDP defined

for each action subtask. POMDPs are solved using the exact POMDP solution

method.

The HPOMDP proposed by Pineau does not have a guaranteed reduction

of the action space and state space since it is dependent on the action abstrac-

tion that is defined manually. The authors have performed experiments (real

and simulated) only for problems of high level behavior control. Hence it is

not clear whether their approach of state abstraction could be applied to the

problem of autonomous robot navigation in the context that we have defined

or, more importantly, if it would perform as efficiently as our approach does,

since the latter has a guaranteed reduction of the state space that is equal to
(|S|/22(L−1)

)
. On the other hand, the authors in [18] do not state how well

35

their approach performs in terms of state space abstraction.

The HPOMDP proposed by Pineau has been used in a real world application

for high level robot control and dialogue management [18]. This application has

been modelled using 576 states, 18 observations and 19 actions categorized into

3 subtasks. The problems encountered with our approach are many orders of

magnitude larger (e.g. |S| = 18, 411, 520, |A| = 256, |Z| = 24) and can be

solved in real time.

7.3 Approximation methods for solving flat POMDPs

A short discussion on the performance of approximation methods for solving

flat POMDPs follows in this section. This discussion will allow us to elaborate

further on the performance of the RN-HPODMP and also necessitate further

the need of the proposed hierarchical structure, at least when considering the

autonomous robot navigation problem.

In [6] a review of approximation methods for solving POMDPs is presented.

The complexity of the methods reviewed can be seen in Table 4. Furthermore,

one of the most recent methods for approximation is the Point Based Value Itera-

tion (PBVI) [4] method. The time complexity of PBVI is O(|S||A||Vt−1||Z||B|),

where |B| is the size of the finite set of belief points and |V | remains constant

throughout iterations.

To summarize, the time complexity of all approximation methods is in the

best case polynomial to the size of the POMDP. All the above mentioned meth-

ods have been applied to problems where the POMDP was comprised of a few

36

Table 4: Complexity of solving a POMDP with the approximation methods

reviewed in [6].

Approximation Method Complexity

MDP O(|A||S|2)

QMDP O(|A||S|2)

Fast Informed Bound (FIBM) O(|A|2|S|2|Z|2)

UMDP O(|A||S|2|V |t−1), |Vt| = |Vt−1||A|

Grid based interpolation extrapolation a O(|G||A||S|2|Z|Ceval)

a|G| is the size of a finite set of grid points used to update the value updates and Ceval is

the computational cost of evaluating the interpolation-extrapolation rule for |G| points, where

in some cases this cost can be eliminated.

thousand states. The problem we consider consists of many orders of magni-

tude larger state space. As a result, the reduction of the state space that the

RN-HPOMDP offers and also the reduction of the action space is crucial to

its performance. Furthermore, since the proposed hierarchical structure is not

restricted to a specific method for solving the underlying POMDPs, a combina-

tion of an approximation method for solving a flat POMDP with the proposed

hierarchical structure can dramatically improve its performance.

7.4 Computational time comparison

Further to the theoretical comparison presented in the previous section, for in-

dicative comparison purposes we provide the CPU times required to solve the

RN-HPOMDP and also the Theocharous and Pineau HPOMDP approaches in

Tables 5, 6 and 7. It should be stressed out, that the times referring to the

37

Table 5: Computation time required to solve a HPOMDP with the compared

approaches.

POMDP size CPU time (sec)

Theocharous [27] |S| = 575 |A| = 4 2.11 - 5.7

|S| = 1385 |A| = 4 5.05 - 26.12

Pineau et. al. [23] |S| = 11 |A| = 6 2.84

|S| = 20 |A| = 30 77.99

Pineau approach are the ones from their initial version of HPOMDP [23] where

there was only action space hierarchy. It should be also noted that the CPU

times mentioned are the ones the authors state and have not been obtained

using computers of the same power. Another point is that the Theocharous ap-

proach is solved using the MLS heuristic and in our approach the POMDPs are

solved using the Voting heuristic that has the same computational complexity

with the MLS heuristic. However, the Pineau HPOMDP is solved using exact

methods. Regardless of the mentioned differences, the superior computational

performance of our approach can be easily extracted from the tabulated results

since the size of the problem is many orders of magnitude larger.

8 Results

The RN-HPOMDP has been tested extensively in a real world environment. The

robot was set to operate for more than 70 hours in the FORTH main entrance

hall shown in Figure 6. The environment was modeled with a RN-HPOMDP

38

Table 6: Computation time required to solve the RN-HPOMDP with varying

grid size and 5 levels.

Grid size POMDP size CPU time (sec)

5cm× 5cm |S| = 18, 411, 520 |A| = 64 18.520

10cm× 10cm |S| = 4, 602, 880 |A| = 64 0.911

15cm× 15cm |S| = 2, 038, 080 |A| = 64 0.426

20cm× 20cm |S| = 1, 150, 720 |A| = 64 0.257

25cm× 25cm |S| = 734, 976 |A| = 64 0.262

30cm× 30cm |S| = 503, 808 |A| = 64 0.251

Table 7: Computation time required to solve the RN-HPOMDP with varying

number of levels and grid size of 10cm× 10cm.

No. of Levels POMDP size CPU time (sec)

3 |S| = 1, 150, 720 |A| = 16 201.210

4 |S| = 2, 301, 440 |A| = 32 16.986

5 |S| = 4, 602, 880 |A| = 64 0.911

6 |S| = 9, 205, 760 |A| = 128 0.460

7 |S| = 18, 411, 520 |A| = 256 0.411

39

Figure 6: The FORTH main entrance hall.

of size |S| = 18, 411, 520, |A| = 256 and |Z| = 24. The RN-HPOMDP was

built with 7 levels. Experiments were performed in a dynamic environment

where people were moving within it. In all cases the proposed navigation model

has shown a robust behavior in reaching the assigned goal points and avoiding

humans or other objects. A sample path the robot followed to reach its goal and

also performed local obstacle avoidance to avoid a human is shown in Figure 7.

(a) (b)

Figure 7: Avoiding a human to reach the goal position. The robot track is

marked with the black dots (•) and the human track is marked with the grey

dots (•).

40

9 Conclusions and Future Work

In this work we introduced a new approach to hierarchical POMDPs (HPOMDPs).

The proposed approach is designed specifically for the autonomous robot navi-

gation problem, hence termed as Robot Navigation-HPOMDP (RN-HPOMDP).

The RN-HPOMDP is utilized as a unified model that caters for planning, local-

ization and local obstacle avoidance. Hence, it is formulated in such a manner

that it does not depend on any other external modules for localization and local

obstacle avoidance. To the best of our knowledge, it is the first time a POMDP

is used to provide the actual actions the robot executes and not as a high level

mission planner. The RN-HPOMDP offers significant state space and action

space reduction compared to other hierarchical approaches present in the liter-

ature. Furthermore, the state space and action space reduction is guaranteed

and not dependent on the environment where the robot operates. Additionally,

the RN-HPOMDP can be used in conjunction with any approximation method

for solving flat POMDPs, to further improve its performance. A novel approach

has been also proposed for storing the model parameters with the reference

POMDP (rPOMDP). The RN-HPOMDP has been experimentally validated in

a real world environment.

Future work involves integrating into the RN-HPOMDP prediction about the

motion of humans and other obstacles to perform efficient and effective obstacle

avoidance in a predictive manner [2, 3]. Furthermore, the application of the

RN-HPOMDP to multi-robot navigation and cooperation will be examined.

41

Bibliography

[1] Anthony R. Cassandra, Leslie Pack Kaelbling, and James A. Kurien. Acting

under uncertainty: Discrete bayesian models for mobile-robot navigation.

In Proceedings of IEEE/RSJ International Conference on Intelligent Robots

and Systems, 1996.

[2] A. Foka and P. Trahanias. Predictive autonomous robot navigation. In Pro-

ceedings IEEE/RSJ International Conference Intelligent Robots and Sys-

tems (IROS), 2002.

[3] A. Foka and P. Trahanias. Predictive control of robot velocity to avoid ob-

stacles in dynamic environments. In Proceedings IEEE/RSJ International

Conference Intelligent Robots and Systems (IROS), 2003.

[4] G. Gordon J. Pineau and S. Thrun. Point-based value iteration: An any-

time algorithm for pomdps. In Proceedings of the International Joint Con-

ference on Artificial Intelligence (IJCAI), 2003.

[5] Milos Hauskrecht. Planning and Control in Stochastic Domains with Im-

perfect Information. PhD thesis, MIT, 1997.

42

[6] M. Hauskrecht. Value function approximations for partially observable

Markov decision processes. Journal of Artificial Intelligence Research,

13:33–95, 2000.

[7] Leslie Pack Kaebling, Michael L. Littman, and Anthony R. Cassandra.

Planning and acting in partially observable stochastic domains. Artificial

Intelligence, 101(1–2):99–134, 1998.

[8] Ashraf A. Kassim, and B. V. K. Vijaya Kumar. Path planners based on

the wave expansion neural network. Robotics and Autonomous Systems,

26(1):1–22, 1999.

[9] Oussama Khatib, Sean Quinlan and David Williams. Robot planning and

control. Robotics and Autonomous Systems, 21(3):249–261, 1997.

[10] Sven Koenig and Reid G. Simmons. Unsupervised learning of probabilistic

models for robot navigation. In Proceedings of the International Conference

on Robotics and Automation, pages 2301–2308, 1996.

[11] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publish-

ers, 1991.

[12] Michael Littman, Anthony Cassandra, and Leslie Kaebling. Learning poli-

cies for partially observable environments: Scaling up. In Proceeding of the

12th International Conference on Machine Learning, pages 362–370, 1995.

[13] Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The compu-

tational complexity of probabilistic planning. Journal of Artificial Intelli-

gence Research, 9:1–36, 1998.

43

[14] F. Lu and E. Milios. Robot pose estimation in unknown environments

by matching 2d range scans. Journal of Intelligent and Robotic Systems,

18:249–275, 1998.

[15] G.E. Monahan. A survey of partially observable markov decision processes:

Theory, models, and algorithms. Management Science, 28:1–16, 1982.

[16] U. Nehmzow and C. Owen. Robot navigation in the real world:Experiments

with Manchesters FortyTwo in unmodified, large environments. Robotics

and Autonomous Systems, 33(4):223–242, 2000.

[17] Daniel Nikovski and Illah Nourbakhsh. Learning probabilistic models for

decision-theoretic navigation of mobile robots. In Proc. 17th International

Conf. on Machine Learning, pages 671–678. Morgan Kaufmann, San Fran-

cisco, CA, 2000.

[18] J. Pineau and S. Thrun. An integrated approach to hierarchy and ab-

straction for POMDPs. Technical Report (CMU-RI-TR-02-21), Carnegie

Mellon University, 2002.

[19] J. Pineau, G. Gordon and S. Thrun. Applying metric-trees to belief-point

POMDPs. In Neural Information Processing Systems (NIPS), 2003.

[20] J. Pineau, M. Montemerlo, M. Pollack, N. Roy and S. Thrun. Towards

robotic assistants in nursing homes: challenges and results. Robotics and

Autonomous Systems, 42(3-4):271–281, 2003.

[21] P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In

Neural Information Systems (NIPS), 2003.

44

[22] K.-M. Poon. A fast heuristic algorithm for decision-theoretic planning.

Master’s Thesis, The Hong-Kong University of Science and Technology,

2001.

[23] N. Roy J. Pineau and S. Thrun. A hierarchical approach to pomdp planning

and execution. Workshop on Hierarchy and Memory in Reinforcement

Learning (ICML), 2001.

[24] N. Roy and G. Gordon. Exponential family PCA for belief compression in

POMDPs. In Neural Information Systems (NIPS), 2003.

[25] R. Simmons and Sven Koenig. Probabilistic robot navigation in partially

observable environments. In Proceedings of the International Joint Confer-

ence on Artificial Intelligence, pages 1080-1087, 1995.

[26] M.T.J. Spaan and N. Vlassis. A point-based POMDP algorithm for ro-

bot planning. In Proceedings of 2004 IEEE International Conference on

Robotics and Automation (ICRA), 2004.

[27] G. Theocharous. Hierarchical Learning and Planning in Partially observ-

able Markov Decision Processes. PhD thesis, Michigan State University,

2002.

[28] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert,

D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Prob-

abilistic algorithms and the interactive musuem tour-guide robot minerva.

International Journal of Robotics Research, 19(11):972–999, 2000.

45

