
Implementation in C+CUDA of Multi-Label Text Categorizers

Lucas Veronese, Alberto F. De Souza, Claudine Badue, Elias Oliveira, Patrick M. Ciarelli
Universidade Federal do Espírito Santo, 29075-910, Vitória-ES

{lucas.veronese, alberto, claudine, elias, pciarelli}@lcad.inf.ufes.br

In automated multi-label text categorization problems
with large numbers of labels, the training databases are
large, which may render the categorization time
prohibitive for online systems. In this work, we evaluate
the parallel implementation in C+CUDA of two multi-
label text categorizers: the first is based on the k-
Nearest Neighbors (k-NN) algorithm [1] and the
second is based on Probabilistic Neural Networks
(PNN) [2]. We implemented these algorithms in three
different ways: sequential in C, parallel in C+CUDA
and parallel using the C+CUBLAS library.

The k-NN categorizer finds the k nearest neighbors of
an input document dx in the set of previously learned
documents, TV, according to some given distance metric
—in the experiments reported in this paper, we used the
cosine of the angle between the floating-point vector that
represents the input document dx (bag-of-words document
representation [1]) and each document TVdi ∈ ,
cos(dx,di):

ix

ix
ix dd

dd
dd

•=),cos((1)

The k-NN categorizer employs a function f(dx,ck) that
returns the highest value of cos(dx,di), for TVdi ∈ and

ik Cc ∈ , where Ci is the set of pertinent categories for the
document di. It selects the k pairs Ccd ix ×∈ D, from
the top of the ranking derived from ()⋅⋅,f .

The PNN used in this work was proposed by
Oliveira et. al [2] and is composed of two feed-forward
layers: pattern layer and summation layer. In the
training phase, for each document di is created a set of
neurons, one for each category ik Cc ∈ , where each

neuron ni stores the vector di as a vector of term
weights, wk,i. In the categorization phase, an input
document dx is presented to the pattern layer. The i-th
neuron, ni, associated to category ck in the pattern layer,
calculates the activation function),,(ikx ncdA for

document dx given by:

 −
=

2
, 1

exp
2

1
),,(

σπσ
ik

t
x

ikx

wd
ncdA , k=1, ..., |C|, i=1, …, |Dk| (2)

where σ is a constant for all neurons (adjusted during
training for best categorization performance [2]), C is
the whole set of possible categories, and Dk is the set of
documents associated to category ck. In the summation
layer, which has as many neurons as |C|, each neuron is
associated with a category ck and computes the function
f(dx,ck):

∑
=

=
||

1

),,(),(
kN

i
ikxkx ncdAcdf , k=1, ..., |C| (3)

where Nk is the number of neurons of the pattern layer
associated to ck. The categories ck ranked above a
threshold are predicted to the input document dx.

We ran the C, C+CUDA and C+CUBLAS versions
of our categorizers in an AMD Athlon 64 X2 (Dual
Core) 5,200+ of 2.7 GHz, with 3GB of 800 MHz DRAM
DDR2, and video card NVIDIA GeForce GTX 285,
with 1GB of DRAM GDDR3.

The data set used is composed of 6,911 documents
categorized into 105 different categories by specialists
in the domain of the documents. Each one of these
categories occurs in exactly 100 different documents,
i.e., there are 100 documents of each category. Each
document is represented by a vector of single precision
floats of size 3,764 (the number of relevant terms in the
system vocabulary).

To evaluate the performance of our categorizers in
terms of time, we selected 6,910 documents of the data
set for training, and a single one for testing the
categorizers. Each categorizer was executed 100 times
and the average was used to compare them. Table 1
shows the average times for each categorizer (rows)
and categorizer implementation (columns), in addition
to the speed-ups over the sequential implementation
(last two columns). As the table shows, we achieved
speed-ups of about 60 for the C+CUDA version and
about 45 for the C+CUBLAS version. These results
show that, with CUDA, it is possible to implement on-
line text categorization and that, in some cases, it is
worth implementing the whole code instead of using
C+CUBLAS.

Table 1: Average times and speed-ups of our text categorizers

Categ.
C
(s)

C+CUDA
(s)

C+CUBLAS
(s)

Speed-up
C+CUDA

Speed-up
C+CUBLAS

k-NN 0.1928 0.0030 0.0042 64.26 45.90
PNN 0.1938 0.0033 0.0044 58.72 44.04

[1] F. Sebastiani, “Machine Learning in Automated Text

Categorization”, ACM Computing Surveys 34(1), 2002,
pp. 1-47

[2] E. Oliveira, P. M. Ciarelli, A. F. De Souza, and C.
Badue. Using a Probabilistic Neural Network for a Large
Multi-Label Problem. Proceedings of the 10th Brazilian
Symposium on Neural Networks (SBRN'08), pp. 195-200,
Salvador, Bahia, Brazil, October 2008.

