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In automated multi-label text categorization problems 
with large numbers of labels, the training databases are 
large, which may render the categorization time 
prohibitive for online systems. In this work, we evaluate 
the parallel implementation in C+CUDA of two multi-
label text categorizers: the first is based on the k-
Nearest Neighbors (k-NN) algorithm [1] and the 
second is based on Probabilistic Neural Networks 
(PNN) [2]. We implemented these algorithms in three 
different ways: sequential in C, parallel in C+CUDA 
and parallel using the C+CUBLAS library. 

The k-NN categorizer finds the k nearest neighbors of 
an input document dx in the set of previously learned 
documents, TV, according to some given distance metric 
—in the experiments reported in this paper, we used the 
cosine of the angle between the floating-point vector that 
represents the input document dx (bag-of-words document 
representation [1]) and each document TVdi ∈ , 
cos(dx,di): 
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The k-NN categorizer employs a function f(dx,ck) that 
returns the highest value of cos(dx,di), for TVdi ∈  and 

ik Cc ∈ , where Ci is the set of pertinent categories for the 
document di. It selects the k pairs Ccd ix ×∈ D,  from 
the top of the ranking derived from ( )⋅⋅,f . 

The PNN used in this work was proposed by 
Oliveira et. al [2] and is composed of two feed-forward 
layers: pattern layer and summation layer. In the 
training phase, for each document di is created a set of 
neurons, one for each category ik Cc ∈ , where each 

neuron ni stores the vector di as a vector of term 
weights, wk,i. In the categorization phase, an input 
document dx is presented to the pattern layer. The i-th 
neuron, ni, associated to category ck in the pattern layer, 
calculates the activation function ),,( ikx ncdA  for 

document dx given by: 
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where σ  is a constant for all neurons (adjusted during 
training for best categorization performance [2]), C is 
the whole set of possible categories, and Dk is the set of 
documents associated to category ck. In the summation 
layer, which has as many neurons as |C|, each neuron is 
associated with a category ck and computes the function 
f(dx,ck): 
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where Nk is the number of neurons of the pattern layer 
associated to ck. The categories ck ranked above a 
threshold are predicted to the input document dx. 

We ran the C, C+CUDA and C+CUBLAS versions 
of our categorizers in an AMD Athlon 64 X2 (Dual 
Core) 5,200+ of 2.7 GHz, with 3GB of 800 MHz DRAM 
DDR2, and video card NVIDIA GeForce GTX 285, 
with 1GB of DRAM GDDR3.  

The data set used is composed of 6,911 documents 
categorized into 105 different categories by specialists 
in the domain of the documents. Each one of these 
categories occurs in exactly 100 different documents, 
i.e., there are 100 documents of each category. Each 
document is represented by a vector of single precision 
floats of size 3,764 (the number of relevant terms in the 
system vocabulary). 

To evaluate the performance of our categorizers in 
terms of time, we selected 6,910 documents of the data 
set for training, and a single one for testing the 
categorizers. Each categorizer was executed 100 times 
and the average was used to compare them. Table 1 
shows the average times for each categorizer (rows) 
and categorizer implementation (columns), in addition 
to the speed-ups over the sequential implementation 
(last two columns). As the table shows, we achieved 
speed-ups of about 60 for the C+CUDA version and 
about 45 for the C+CUBLAS version. These results 
show that, with CUDA, it is possible to implement on-
line text categorization and that, in some cases, it is 
worth implementing the whole code instead of using 
C+CUBLAS. 
 
Table 1: Average times and speed-ups of our text categorizers 

Categ. 
C  
(s) 

C+CUDA 
(s) 

C+CUBLAS 
(s) 

Speed-up  
C+CUDA 

Speed-up 
C+CUBLAS 

k-NN 0.1928 0.0030 0.0042 64.26 45.90 
PNN 0.1938 0.0033 0.0044 58.72 44.04 
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