Hardware Supported Synchronization Primitives for
Clusters

Alberto F. De Souzd, Sotério F. Souzj Claudio Amorim?, Priscila Lima' and Peter Rouncd

'Departamento de Informatica, Universidade Federdispirito Santo, Vitéria-ES, Brazil
’Programa de Engenharia de Sistemas e Computadd8G/@0PPE, Universidade Federal do Rio de Janeiro,
Rio de Janeiro-RJ, Brazil
*Computer Science Department, University Collegedam London, United Kingdom

Abstract - Parallel architectures with shared memory are
well suited to many applications, provided that efficient
shared memory access and process synchronization
mechanisms are available. When the parallel machine is a
cluster with physically distributed memory, software based
synchronization mechanisms together with virtual memory
infrastructure can implement Software Distributed Shared
Memory (SDSM), a shared memory abstraction on a
distributed memory machine. However, the communication
network overload from the emulation can limit the
performance of such systems. This problem motivated our
research, in which we developed a set of synchronization
primitives for SSDSM on reconfigurable hardware. This
hardware implements an auxiliary synchronization network,
which works in parallel to the data communication network.
Experiments evaluating our hardware implementation
against a software one showed that our system increases the
performance of these SDSM primitives by a factor of 40 or
more.

Keywords: Clusters, Distributed Synchronization, Barriers,

Locks.

1 Introduction

Parallel

Proper selection of synchronization points coupleih
knowledge of the memory consistency model make
programming S-DSM systems as easy as shared memory
systems in most cases.

The implementation of efficient S-DSM systems
demands fast synchronization mechanisms. Howewer, i
many of such systems, synchronization mechaniscisagge
messages between processors through the convdntiona
communication network in competition with other ffia
These messages also pass through the network gkotoc
layers, further slowing synchro-nization. Obsematof these
deficiencies motivated us to investigate the hardwa
implementation of distributed synchronization metbms.
Hence, we have developed a distributed synchraaizat
system, using reconfi-gurable hardware, where tbegssors
of a cluster use a separate auxiliary synchromnatietwork
(Figure 1).

To implement our distributed synchronization systeen
studied the synchronization mechanisms necessaryS{o
DSM, evaluating the importance and viability of ardware
implementation of a subset of these. Our evaluatied us to
implement two synchronization mechanisms: barried a
lock. Both are synchronization primitives heavilged in
parallel processing.

When associated with a group of processes, bdrasr
the property of not allowing any of them to procemtkess all

machines can have shared or distributethembers of the group have reached the barrier. cookols

memory. Shared memory parallel machines are edsier access to critical regions. Each lock has an aatatitoken
program than distributed memory ones mainly becdbse and, if a process needs to access the lock’s alritégion, it
data structures manipulated by parallel algoritheas be must first request and acquire the token, or ldacess to a
more easily accessed in the former. However, shaedory lock by processes is mutually exclusive, so a m®ce
parallel machines are harder, and consequentlfiempsto  requesting the lock must wait if the lock is alrgdueld by
implement. But, it is possible to use software, theual another process.

memory infrastructure and the data communicatiovoek We have compared our hardware implemented barrier
of distributed memory machines to emulate sharechomg  primitive with the same primitive implemented inftseare
systems [1]. These shared memory systems are kramswn using MPI [2]. Our barrier was 40 times faster thtwe
Software-Distributed Shared Memory systems (S-DSM). MPI_Barrier primitive. Our lock operated in a sianiltime to
S-DSM systems many processors may possess a copy obur barrier primitive.

piece of the shared memory (e.g. a virtual memagep.

Consistency among the copies of these shared items

guaranteed only at synchronization points of thmpmatation.



PNO PN1 PNn-2 PNn-1

CNI CNI CNI CNI

[ 1 [ 1

Conventional Data Network
Convencional Network

SNI
Interface -
Processor Node

Figure 1: Distributed synchronization system

Assistant Synchronization
Network Interface

CNI

2 Related Work

Two works in the literature present results relévian

our work: the Dietz et al. TTL_PAPERS [3] and the

Hayakawa  and Sekiguchi
Communication Controller (SCC) [4].

TTL_PAPERS [3] is an implementation in TTL
hardware of Purdue's Adapter for Parallel Executsrd
Rapid Synchronization (PAPERS [5]). This hardwaragkes
use of the parallel ports of a cluster's computéns
conjunction with some simple external hardware fbe
implementation of a barrier. A single barrier isdeavailable
and all processors of the cluster are members single
group, so that they synchronise at this one barfldre
hardware described does not implement locks.

The shorter time for barrier synchronization
TTL_PAPERS is 2.5us for a 4 processor cluster, iand
estimated that this would not change with the nunalhé€’Es.
However, the design of the external hardware cheiaged its
complexity increases with PE number, and an extaada
system might well have barrier synchronization 8ntbat

Synchronization

3 Hardware synchronization mechanism

Our auxiliary synchronization network consists of a
hierarchical network (Figure 2) that operates thiou
messages sent by processors via 2 network elemdoties
at the bottom associated with the processors,
Synchronizers in the upper levels.

and

Layer 1

Layer 2

Layer 3

Layer 4

Top Syncher

Processor Node
Figure 2: Topology of the auxiliary network

Intermediary Syncher

Our requirements for synchronization were for this

andauxiliary network to carry 4 types of messages: fanthe

barrier and two for the lock. We augmented thesi wio
further messagesieset and broadcast. The reset message
initializes the Global Clock, an extra facility pided by the
synchronization network [6], whilébroadcast provides a
general-purpose message distribution capability. e Th
auxiliary network is designed on the premise thawmlvard
messages are broadcast to all lower level elementse
Intermediate Synchronizers (IS) retransmit all so@ssages

to all lower level elements such that they are ixexk
synchronously. Barriers are implemented by masks

indistributed across the Synchronizers. For a pdatidoarrier

(there may be more than one), a synchronizer haldssk,
the bits of which indicate which of its sub-treestjTipate in
the barrier: for the synchronizers in the levelhabthe Nodes,
the mask bits indicate which of its attached Noaesin the
barrier. Figure 3 illustrates the general format thie

increase with PE count. Our hardware obtained éarri messages.

synchronization times of 1.686us on average, whiclild
increase logarithmically with PE count. We cannetfgctly
compare these times with TTL_PAPERS, as its exparm
use processors with lower frequencies than thoseris.

The SCC [4] implements barriers for clusters using

specialised PCI boards that are inter-connecte@ ione-
dimensional daisy-chain by 40-way cables suchniegsages
from one end to the other traverse all the nodés. “Bync-
comm” network produced by the boards provides acdéed
synchronization network separate from the conveatio
network, as does our auxiliary network. As withe th
TTL_PAPERS, just a single barrier is available, &ub-set
of the processors can be selected to participatieeirbarrier,
and again lock was not provided. Barrier synchratidn

times in SCC were 3.2us and 6.2us for two and fo

processor clusters respectively, whereas expersnamtour
hardware with 2-processor clusters gave resulerimf than
2|us on average.

[ ]

start bit command data stop bit

Figure 3: General format of a message

A message is detected through a start bit — aiti@ms
from inactivity (logic 0). After this bit, three aamand bits
are sent containing the message code, which irdita
operations to be carried out. A number of data, higsying
from zero to 76, follow, and a message terminatéh the
control stop-bit, forcing the line to inactive. Ghe 8
commands available, only 6 are used with the res¢rved

quQr future use. The six commands, or message types,

detailed below:

reset. Initializes the Global Clock. This command is
passed up in the hierarchy of Synchronizers untieaches
the top. Then, it goes down initializing all the déoGlobal



Clock counters by synchronously arriving at each thod
Nodes [6]. Areset message has no data bits.

Memory and broadcasts darrier reaching message
downwards. Messages of typleck acquire request the

barrier. Creates a barrier. This message traverses ttezquisition of a specific lock. If the lock is aladile, the

network to the top, configuring a barrier. All Nade
participating in the barrier send a barrier creatinessage,
though not all reach the top. Synchronizers thaetaready
come in contact with the barrier message do ngpamgate it
up. Barrier mask information is propagated as d#ahese
messages to the Synchronizers indicating who peates of
the barrier.

barrier reaching. Informs the Synchronizer that a
particular barrier has been reached. When all Nodes
Synchronizers connected to a particular Synchronizese
indicated that they have reached a barrier, thiscBynizer
informs the one above it of this fact, unless itthe Top
Synchronizer, when the barrier is considered todyapleted.
At this point, the Top Synchronizer sends a messdgbe
same kind down the hierarchy to signal that theideahas
completed. Barrier masks in the Synchronizers hiaeg bits
cleared as this message propagate downward.

broadcast. Disseminates a message with a 76-bit data FPcA

field throughout the network. The data contentssrulefined.

A broadcast message first goes up the hierarchy and then Bamervemary. | T ’

goes down to reach all Nodes.

lock acquire. Requests a lock. A lock request traverses | | i Eaniel

the network to the top. If the Top Synchronizerifies that
the lock is free, it sendslack acquire message down the tree,
giving all Nodes the ID of the lock's acquiring Nad
otherwise the message is discarded.

lock release. Frees a lock. The message traverses the

network to the top before being broadcast dowmrimfng all
Nodes that the lock has been freed.

3.1 The Top Synchronizer

The Top Synchronizer (TS), see Figure 4, is unique

occupying the root of the auxiliary network tred. is
responsible for the control of creation and libiemt of
barriers, and for the granting of all locks. The & eight
incoming and outgoing serial ports for communiaatigith
the next lower level of the network. At the tophtigf Figure
4 is shown the 64 MHz Pulse Generator that synéhesrthe
auxiliary network and increments the Global Clock.

Locks Memory is updated with the identifier of tihode
requesting the lock andlack acquire message is broadcast
down the network, signalling the acquisition of tbek and
the acquiring processor ID. If the lock is unavalda the
message is discarded. Unsatisfied requests cagsesting
processors to wait until lack release for this requested lock
is received. After that, the lock request can beriesl.
Messages of typkock release update the Locks Memory and
generate #ock release broadcast signalling the availability of
the lock.
Transmitter Down has only one message store, since

each message is always sent out on all 8 outgengl $inks

to the lower hierarchical levels.
Pulse ;enerator

Net_clk

Core

Lock Memory :
; i
Control H
--------------------------- - .'
Data »
v
Receiver Transmitter
Down Down
'
Net_clk i
_ ]
Rx_down_0-7 Tx_down_0-7 Sync_bsy_0-7 Net_clk_0-7
D FPGA Borderline L,,J Net_clk Frequency Field

Figure 4: The Top Synchronizer

Receiver Down has an 8-entry store for incoming

messages on its 8 incoming serial links. It sigtiaéscontrol
core with the identity of the incoming port on whia
message has been received. The control core rdws
message via the internal bus, identifies the typd acts
accordingly. Messages of typeset andbroadcast are sent on
all outgoing serial ports without any local actibfessages of

3.2 The Intermediate Synchronizer

t The Intermediate Synchronizer (IS), which implersent
the interior nodes of the network tree, are shawRigure 5.
The Receiver Down and Transmitter Down are the sasria
the TS: concentrating incoming messages from Idesls,

type barrier cause the synchronizer to create the barrier. Ofnd broadcasting outgoing messages on all linkansmitter

receipt of the first message about the creatiom apecific
barrier, the barrier memory is updated; subseqbantier
messages for this same barrier are discarded. Wé$sages

Up and Receiver Up units handle single messagesfaen
with the immediately superior Synchronizer. Receilp
makes received messages available over the intdatalbus

of type barrier reaching, the TS records, in the Barriers {0 other elements as soon as the data of the messag

until it has received such messages from all selstr message’s command. Downward messages are forwaiaed

involved in the barrier, at which point it updatee Barriers Transmitter Down to all lower level elements imnzgely in



order to provide for synchronous receipt acrosmtiteiork in  positive transition of the clock signal — Net_clk eoming

as few cycles as possible. The only internal preingsis for  from the Top Synchronizer. The network design hasnb

downward messages of typarrier reaching, when the IS implemented to guarantee that all Nodes receiveGlubal

barrier memory is updated, freeing the barrierllgca Clock and anyeset message at the same instant. Therefore, it
For upward propagating messages of typeset, can be assured that the counters of Nodes araliirti

broadcadt, lock acquire andlock release, the control core just and/or incremented in a synchronous manner, holdlig

commands their retransmission via Transmitter Upsséges same counting (time) value at each clock cycle.

of type barrier require that the Barriers Memory is accessed

to verify if the specified barrier has already bexeated if TX_up Rx_up

. f . . Sync_bsy Net_clk

so, the control core discards the message; ifthetbarrier is HOTII Board

created locally and the message is sent upwardsardiing

the barrier mask relative to the current level. Arrter : :

creation message has its size reduced by 8 bitstene it is Clobal Tranjrpniﬂer Re%e;ver

forwarded. Messages of typearrier reaching update the : [ 3 ;

Barriers Memory by clearing the bit in the barrieask for beeeneed Ay

the sub-tree from which the message arrived. # ihithe last e A M-Sy ;

of the mask bits to beeroed, the message is sent up the

network; if not, the message is not forwarded,distarded.
Core

P H
; o ] Control
Tx_up Rx_up Net_clk : 2 :

Sync_bsy

FPGA l ; 3 3

i

i i

i Broadcast ===+ g ] : H

L [ Memory : : { :

Transmitter Barrier Memory Receiver i H v v l
Up Up ! H !

! | PCICore |

i H 7'y i

; i

i

Data : H Control
| TPrATH i Data

Core
Control PCI BUS

|:| HOTII Board
D FPGA Borderline

Figure 6: Blocks diagram of Node

Frequency Net_clk domain

* Frequency Pci_clk domain
Receiver Transmitter
Down Down

Net_clk

Receiver Up and Transmitter Up are essentiallystrae
HHH l as in the IS. The control core is the element resinte for

treating the messages deriving from the PCI busRewkiver
Up. All messages, without exception, coming frora #ClI
bus are transmitted upwards. All messages recdioad the

Rx_down_0-7 Sync_bsy_0-7 Tx_down_0-7 Net_clk_0-7

[ 7o Borderine 1 Net_clk Frequency Field network via the Receiver Up require action from taatrol
, _ , ) core.
Figure 5: The Intermediate Synchronizer Of the messages originated at the PCI bus béneier
33 The Node ones require that the Barriers Memory of the Node b

updated, creating the barrier. When a downwaedet
The Node, structure shown in Figure 6, consists BCI message is received, the Global Clock counterindtiagdized.

board installed inside each computer to implemeetlowest For downward messagesarrier reaching and lock release,

level of the network. Memory within the board isppad to the Barriers and Locks Memory are updated respalgtiv

processor addresses over the PCI bus [7]. To semelsaage, Downward broadcast messages are stored in the Broadcast

the Node processor (NP) writes it to a specificradsl in the Memory, along with the lower-order 48 bits of théokzal

PCI bus interface. To discover if a barrier hasnbesached, Clock, which record their reception time. Downwaatk

the NP reads from a set of 256 addresses, each omefuire messages update the Locks Memory with the

corresponding to a barrier. Lock status (free /frext) is read identifier of the acquiring Node.

from another set of 256 addresses, each one comés to

a lock. Broadcast messages are read from a rand®2f 4 Methods

addresses that form a circular list, each addresssponding
to a specific broadcast message. To perform validation and evaluation tests of thistem

Implementation of the Global Clock requires a 64-bi developed, we implemented the hardware in H.O. FRGA
counter in each Node [Bwhich is incremented at each development boards [8]. Such a board consists efbtsic



operational circuitry, memory banks and a model
XC4062XLA-HQ240 FPGA, made by Xilinx [9]. The
FPGAs development tool chosen was also from Xilifilke
experimental system, shown in Figure 7, has a @&lev
hierarchy with just 2 Nodes and a Top Synchronibet, no
Intermediate Synchronizers. Each element is a mxnputer
with attached H.O.T. Il board, programmed to bédezita
Node or a TS. Category 5, Shielded Twisted PairP(ST
cables of 5m length with 4-pairs are used to conrlee
elements.

T.S.

0 | | 1
Node Node

Figure 7: Diagram of the environment for experinsent

The machine hosting the TS was used solely to tbad
FPGA with the logic for the TS and to provide poierthe
H.O.T. Il board. The machines hosting the Nodesidas the
H.O.T. Il boards, had 100Base-T Ethernet netwot&rfaces
to inter-connect them via a switch to create oyregixnental
cluster. Communication with the H.O.T. Il board and
uploading of the Node hardware program into the ARGs
thorough a Linux driver module developed by theeagsher
teams of DI/UFES and COPPE/UFRJ. The module iseldad
at operating system initialization. This moduleuss the
mapping of the PCl bus to memory positions, engblin
communication with the FPGA and other board comptse
such as the memories and ports.

5 Test programs

unsigned int j = atoi(argv[1]) ;
MPI_Init(&argc, &argv) ;
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank) ;
MPI_Comm_size(MPI_COMM_WORLD, &num_procs) ;
MPI_Barrier(MPI_COMM_WORLD) ;
unsigned long start_all = SyncGetTsc() ;
for (k=0;k<j;k++) {
for (b=0;b<256;b++) {
start = SyncGetTsc() ;
MPI_Barrier(MPI_COMM_WORLD) ;
stop = SyncGetTsc() ;
... I* Computation of the average barrier tithe
}
}

unsigned long end_all = SyncGetTsc() ;
MPI_Finalize() ;

Figure 8: Barrier implemented in software

for (k=0;k<j;k++) {
for (barrier=0; barrier <256;b++) {
SyncCreateBarrier(barrier, mask);
start = SyncGetTsc() ;
SyncReachBarrier(barrier) ;
SyncVerrifyBarrier(barrier) ;
stop = SyncGetTsc() ;
... I* Computation of the average barrierdi*/

Figure 9: Barrier implemented in hardware

To validate the hardware and to evaluate the ayili The test programs developed were instrumented $o as
network, we implemented a series of small C program€nable us to measure lock and barrier times. Thie co
These programs were not intended to perform angiymtive instrumentation instruction used wasd-time stamp counter
computation but were designed to exercise key cheniatics — rdtsc [10] — via the callSyncGetTsc(). The programs were
of the synchronization network. compiled by MPI compiler (mpicc), and run on theotw

We developed a program that executes a parall@rocessors configured as Nodes.
computation that uses synchronization via barriesing the
Message Passing Interface (MPI) mechanism as gsaftwa
support [2]. Figure 8 contains the key elementsthudt
program, which implements a barrier in a convergionay
by software. The bolded line of code implementstthrier.

The code of Figure 8 was then slightly modifiedcteate
the code of Figure 9, where 256 barriers are implged by
hardware (see bolded lines in Figure 9). This codes
software modules that rely on the auxiliary netwdrk
provide synchronization support.

Validation and evaluation of the hardware lock ieeph
the development of test programs in a similar faisho that }
of the barrier implementation. Figure 10 shows dhde that
contains the call to a hardware implemented lock.

for (k=0;k<j;k++) {
start = SyncGetTsc() ;
do {
SyncGetLock(lock) ;
| = SyncVerifyLock(lock) ;
Ywhile (I I= proc);
stop = SyncGetTsc() ;
SyncFreeLock(lock) ;
... I* Computation of the average lock time */

Figure 10: Lock implemented in hardware



Evaluation was based on thgerage of the barriers and

locks times, on the total execution times of thst programs,
and on the speedup obtained by the hardware impiitien
of barriers in comparison to their software impl&a¢ion.
We obtained the duration of a barrier from two titaenp

As tables 1 and 2 show, the mean times for hardware
implemented barriers are smaller than for software
implemented ones. It can also be seen that theewégution
times of the corresponding programs indicate thaseé with
hardware barrier implementation performed conshlgra

readings viaSycGetTsc calls placed in defined points of the better (as the frequency of the real-time clockhef Node

test program. The duration of lock is obtained imil&r
manner, according to Figure 10. Likewise, total cexi®on
times of a program were acquired. Having gathetethis
information, these times are computed from the $tar@ps
by equation 4.1:

time,, = (tina — tiga )/ fp

wheretimeygy is the required timd,iiq andtsny are the first
and second timestamps read3ypcGetTsc calls, and,, is the
frequency of the Global Clock.

The speedup indicates in which proportion a system
faster than another. In this work, we computed gpeedup
according to equation 4.2:

speedup =t /thard

(4.1)

(4.2)

wheretgy, is the time taken by the software implementation t

execute a lock or barrier ang,q is the time taken by the
hardware one.

6 Experiments

We performed a series of tests, results presemnted
Table 1, on the program that implements barriersoiitware,
and another set, results presented in Table 2h@mptogram
that implements barriers in hardware. Each seoesisted of
running a program six times, exponentially varyingpowers
of ten the number of barriers creatéle measured the

barriers timeand the total execution time of each program

running each test.

Table 1: Barrier implementation in software.

Number of Average (us) Total execution time
barriers (un) of each program (s)
256 106.064 0.041130420
2,560 95.284 0.294931485
25,600 87.773 2.678029310
256,000 88.905 27.129206158
2,560,000 89.008 271.460952398
25,600,000 87.074 2,658.359010029

Table 2: Barrier implementation in hardware.

Number of Average (us) Total execution time
barriers (un) of each program (s)
256 1.713 0.001969581
2,560 1.906 0.019094939
25,600 1.656 0.191182427
256,000 2.059 1.942289606
2,560,000 1.763 19.861682971
25,600,000 1.852 199.708281373

processors is 1.532939GHz, the precision on the tgrsub-
nanosecond).

The chart of Figure 11 displays the speedup between
two kinds of barrier implementation. The horizontal
dimension represents the number of barriers iretteeution
of a test program. The vertical dimension is coraguty the
division of the Average column of Table 1 (mean time of
barrier in software) by the corresponding columrTable 2
(mean time of barrier in hardware). These valuesvstinat a
barrier that has been implemented in hardwarengwerage,
around 50 times faster than one that has been ingplted in
software.

70

0 T T T
256 2,560 25,600 256,000 2,560,000 25,600,000

Number of Barriers

Figure 11: Speedup for hardware barriers

25

20 +

15 +

Speedup

T
256 2,560 25,600 256,000 2,560,000 25,600,000

Number of Barriers

Figure 12: Speedup of total execution time

Figure 12 presents the process execution time speed
for the hardware implementation compared to thewsog
one. As the barrier count reaches the value of(®&%5,the
hardware-based program has an execution time 18stim
smaller than that of the software-based one, wiildower
barrier counts, around hundreds of barriers, tkiSoris
around 20.



Table 3: Lock implementation in hardware.

Number of Average (Us) Total execution time
locks (un) of each program (s)
256 1.147 0.002349573
2,560 1.163 0.023554924
25,600 1.169 0.237558289
256,000 1.169 2.380268197
2,560,000 1.165 23.941582051

Lock performance tests were performed in a sinilay to
the barrier tests with the program of Figure 10cexed six
times, exponentially varying the numbers of lockgpowers
of 10. Each run measured the time of each lockthadotal
execution time of the program. Table 3 shows tlselte. The
mean times of hardware implemented locks are viarsecto
those for barriers. This is expected, as messageegsing
and transmission through the auxiliary networkinsilar for
both barriers and locks.

7 Conclusions

Our experiments validate the proposed synchromizati
design which we believe provides an improved sotutiver
similar hardware solutions in the literature foe tfollowing
reasons. The design has better features: two synmiclation
primitives — barrier and lock; a message transmissnfra-

(3]

(4]

(5]

(6]

(7]
(8]
(9]

(10]

(11]

structure; and a Global Clock. Moreover, when thesgl2]

mechanisms are used with other network resources, o
system becomes a unique tool for the debuggingaddliel
programs [11]. The tree-structured network archiber
makes the design readily extendable with a logauiith

increase in layers with processing nodes and with

synchronization overheads scaling at a similar ridigaic
rate. The performance is similar if not yet proyatétter than
other designs, while we consider the implementatiosts to
be low.

The results obtained from our experiments confinat t
barriers implemented in hardware perform 40 timaster
than barriers implemented in software with MPI. Tlbek
times that were measured are consistent with tireieba
times, inducing the belief that the performance thé
hardware implementation of this primitive would albe
much superior to an implementation in software.

As future work, we intend to perform experiments fo
the performance evaluation our auxiliary network the
synchronization infrastructure needed for a disted shared
memory environment. Cilk [12] is a distributed stthr

memory environment that we envisage as adequate to

evaluate barriers and locks in this context.

8 References

[1] C. Amza et al. TreadMarks: Shared Memory Cormmut
on Networks of Workstations. IEEE Computer, Febyuar
1996, p. 18-28.

[2] MPI: A Message-Passing Interface Standard. kiges
Passing Interface Forum, V1.1, June  1995.
http://www.mpi-forum.org/docs/mpi-11-html/mpi-
report.html.

H. G. Dietz, R. Hoare, and T. Mattox. A fineagm parallel
architecture based on barrier synchronizationriational
Conference on Parallel Processing, 1996, pp. 247-25

K. Hayakawa, S. Sekiguchi. Design and Impleragah of

a Synchronization and Communication Controller for
Cluster Computing Systems. 4° Int. Conference oghHi
Performance Computing in Asia-Pacific Region, Vb).
May 2000, pp. 76-81.

T. Muhammad. Hardware barrier synchronizatian &
cluster of personal computers. M.Sc. Dissertatfurdue
University, May 1995.

C. L. Amorim, A. F. De Souza. Distributed gldbdock
for clusters of computers. United States Patent No.
20060212738, 21/09/2006

PCISIG. PCI Local Bus Specification — Revisiéh2.
December 1998.

Virtual Computer Corporation. H.O.T. Il — Hardve API
Guide. Version 2.3. Virtual Computer Corporatiof9%a.
Xilinx. XC4000XLA/XV Filed Programmable Gate
Arrays. Version 1.3, Xilinx Product Specificatio@¢ctober
1999.

Intel. Pentium Il Processor: Using the RDTS®Gttuction
for Performance Monitoring. Application Notes. Inte
January 1998.

W. Meira Jr., T. LeBlanc, A. Poulos. Waitinghe analysis
and performance visualization in carnival. ACM
SIGMETRICS Symposium on Parallel and Distributed
Tools, May 1996.

R. M. da Silva, L. Whately, Lauro, M. C. S. @astro, C.
Bentes, C. L. Amorim. Runtime Support for Running
Applications with Dynamic and Asynchronous Task
Parallelism in Software DSM Systems. Proceedinghef
17th Simposium on Computer Architecture and High
Performance Computing. Los Alamitos CA/USA : IEEE
Computer Society, 2006. v. 1. p. 1-10



