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Abstract - Parallel architectures with shared memory are 
well suited to many applications, provided that efficient 
shared memory access and process synchronization 
mechanisms are available. When the parallel machine is a 
cluster with physically distributed memory, software based 
synchronization mechanisms together with virtual memory 
infrastructure can implement Software Distributed Shared 
Memory (S-DSM), a shared memory abstraction on a 
distributed memory machine. However, the communication 
network overload from the emulation can limit the 
performance of such systems. This problem motivated our 
research, in which we developed a set of synchronization 
primitives for S-DSM on reconfigurable hardware. This 
hardware implements an auxiliary synchronization network, 
which works in parallel to the data communication network. 
Experiments evaluating our hardware implementation 
against a software one showed that our system increases the 
performance of these S-DSM primitives by a factor of 40 or 
more. 

Keywords: Clusters, Distributed Synchronization, Barriers, 
Locks. 

1 Introduction 
Parallel machines can have shared or distributed 

memory. Shared memory parallel machines are easier to 
program than distributed memory ones mainly because the 
data structures manipulated by parallel algorithms can be 
more easily accessed in the former. However, shared memory 
parallel machines are harder, and consequently costlier, to 
implement. But, it is possible to use software, the virtual 
memory infrastructure and the data communication network 
of distributed memory machines to emulate shared memory 
systems [1]. These shared memory systems are known as 
Software-Distributed Shared Memory systems (S-DSM). In 
S-DSM systems many processors may possess a copy of a 
piece of the shared memory (e.g. a virtual memory page). 
Consistency among the copies of these shared items is 
guaranteed only at synchronization points of the computation. 

Proper selection of synchronization points coupled with 
knowledge of the memory consistency model make 
programming S-DSM systems as easy as shared memory 
systems in most cases. 

The implementation of efficient S-DSM systems 
demands fast synchronization mechanisms. However, in 
many of such systems, synchronization mechanisms exchange 
messages between processors through the conventional 
communication network in competition with other traffic. 
These messages also pass through the network protocol 
layers, further slowing synchro-nization. Observation of these 
deficiencies motivated us to investigate the hardware 
implementation of distributed synchronization mechanisms. 
Hence, we have developed a distributed synchronization 
system, using reconfi-gurable hardware, where the processors 
of a cluster use a separate auxiliary synchronization network 
(Figure 1). 

To implement our distributed synchronization system we 
studied the synchronization mechanisms necessary for S-
DSM, evaluating the importance and viability of a hardware 
implementation of a subset of these. Our evaluations led us to 
implement two synchronization mechanisms: barrier and 
lock. Both are synchronization primitives heavily used in 
parallel processing.  

When associated with a group of processes, barrier has 
the property of not allowing any of them to proceed unless all 
members of the group have reached the barrier. Lock controls 
access to critical regions. Each lock has an associated token 
and, if a process needs to access the lock’s critical region, it 
must first request and acquire the token, or lock. Access to a 
lock by processes is mutually exclusive, so a process 
requesting the lock must wait if the lock is already held by 
another process.  

We have compared our hardware implemented barrier 
primitive with the same primitive implemented in software 
using MPI [2]. Our barrier was 40 times faster than the 
MPI_Barrier primitive. Our lock operated in a similar time to 
our barrier primitive.  
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Figure 1: Distributed synchronization system 

2 Related Work 
Two works in the literature present results relevant to 

our work: the Dietz et al. TTL_PAPERS [3] and the 
Hayakawa and Sekiguchi Synchronization and 
Communication Controller (SCC) [4].   

TTL_PAPERS [3] is an implementation in TTL 
hardware of Purdue's Adapter for Parallel Execution and 
Rapid Synchronization (PAPERS [5]). This hardware makes 
use of the parallel ports of a cluster’s computers in 
conjunction with some simple external hardware for the 
implementation of a barrier. A single barrier is made available 
and all processors of the cluster are members of a single 
group, so that they synchronise at this one barrier. The 
hardware described does not implement locks.  

The shorter time for barrier synchronization in 
TTL_PAPERS is 2.5µs for a 4 processor cluster, and it is 
estimated that this would not change with the number of PEs. 
However, the design of the external hardware changes and its 
complexity increases with PE number, and an extendable 
system might well have barrier synchronization times that 
increase with PE count. Our hardware obtained barrier 
synchronization times of 1.686µs on average, which would 
increase logarithmically with PE count. We cannot perfectly 
compare these times with TTL_PAPERS, as its experiments 
use processors with lower frequencies than those in ours.    

The SCC [4] implements barriers for clusters using 
specialised PCI boards that are inter-connected in a one-
dimensional daisy-chain by 40-way cables such that messages 
from one end to the other traverse all the nodes. The “sync-
comm” network produced by the boards provides a dedicated 
synchronization network separate from the conventional 
network, as does our auxiliary network.  As with the 
TTL_PAPERS, just a single barrier is available, but a sub-set 
of the processors can be selected to participate in the barrier, 
and again lock was not provided. Barrier synchronization 
times in SCC were 3.2µs and 6.2µs for two and four 
processor clusters respectively, whereas experiments on our 
hardware with 2-processor clusters gave results inferior than 
2µs on average. 

3 Hardware synchronization mechanism  
Our auxiliary synchronization network consists of a 

hierarchical network (Figure 2) that operates through 
messages sent by processors via 2 network elements: Nodes 
at the bottom associated with the processors, and 
Synchronizers in the upper levels.  
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Figure 2: Topology of the auxiliary network 

Our requirements for synchronization were for this 
auxiliary network to carry 4 types of messages: two for the 
barrier and two for the lock. We augmented these with two 
further messages: reset and broadcast. The reset message 
initializes the Global Clock, an extra facility provided by the 
synchronization network [6], while broadcast provides a 
general-purpose message distribution capability. The 
auxiliary network is designed on the premise that downward 
messages are broadcast to all lower level elements – the 
Intermediate Synchronizers (IS) retransmit all such messages 
to all lower level elements such that they are received 
synchronously. Barriers are implemented by masks 
distributed across the Synchronizers. For a particular barrier 
(there may be more than one), a synchronizer holds a mask, 
the bits of which indicate which of its sub-trees participate in 
the barrier: for the synchronizers in the level above the Nodes, 
the mask bits indicate which of its attached Nodes are in the 
barrier. Figure 3 illustrates the general format of the 
messages.  

 
1 C0 C1 C2 D0 D1 Dn 0

start bit command data stop bit

1 C0 C1 C2 D0 D1 Dn 0

start bit command data stop bit  

Figure 3: General format of a message 

A message is detected through a start bit – a transition 
from inactivity (logic 0). After this bit, three command bits 
are sent containing the message code, which indicate the 
operations to be carried out. A number of data bits, varying 
from zero to 76, follow, and a message terminates with the 
control stop-bit, forcing the line to inactive. Of the 8 
commands available, only 6 are used with the rest reserved 
for future use. The six commands, or message types, are 
detailed below: 

reset. Initializes the Global Clock. This command is 
passed up in the hierarchy of Synchronizers until it reaches 
the top. Then, it goes down initializing all the Node Global 



Clock counters by synchronously arriving at each of the 
Nodes [6]. A reset message has no data bits. 

barrier. Creates a barrier. This message traverses the 
network to the top, configuring a barrier. All Nodes 
participating in the barrier send a barrier creation message, 
though not all reach the top. Synchronizers that have already 
come in contact with the barrier message do not propagate it 
up. Barrier mask information is propagated as data via these 
messages to the Synchronizers indicating who participates of 
the barrier. 

barrier reaching. Informs the Synchronizer that a 
particular barrier has been reached. When all Nodes or 
Synchronizers connected to a particular Synchronizer have 
indicated that they have reached a barrier, this Synchronizer 
informs the one above it of this fact, unless it is the Top 
Synchronizer, when the barrier is considered to be completed. 
At this point, the Top Synchronizer sends a message of the 
same kind down the hierarchy to signal that the barrier has 
completed. Barrier masks in the Synchronizers have their bits 
cleared as this message propagate downward. 

broadcast. Disseminates a message with a 76-bit data 
field throughout the network. The data content is user defined. 
A broadcast message first goes up the hierarchy and then 
goes down to reach all Nodes. 

lock acquire. Requests a lock. A lock request traverses 
the network to the top. If the Top Synchronizer verifies that 
the lock is free, it sends a lock acquire message down the tree, 
giving all Nodes the ID of the lock’s acquiring Node, 
otherwise the message is discarded. 

lock release. Frees a lock. The message traverses the 
network to the top before being broadcast down, informing all 
Nodes that the lock has been freed. 

3.1 The Top Synchronizer 

 The Top Synchronizer (TS), see Figure 4, is unique, 
occupying the root of the auxiliary network tree. It is 
responsible for the control of creation and liberation of 
barriers, and for the granting of all locks. The TS has eight 
incoming and outgoing serial ports for communication with 
the next lower level of the network. At the top right of Figure 
4 is shown the 64 MHz Pulse Generator that synchronizes the 
auxiliary network and increments the Global Clock.  

Receiver Down has an 8-entry store for incoming 
messages on its 8 incoming serial links. It signals the control 
core with the identity of the incoming port on which a 
message has been received. The control core reads the 
message via the internal bus, identifies the type and acts 
accordingly. Messages of type reset and broadcast are sent on 
all outgoing serial ports without any local action. Messages of 
type barrier cause the synchronizer to create the barrier. On 
receipt of the first message about the creation of a specific 
barrier, the barrier memory is updated; subsequent barrier 
messages for this same barrier are discarded. With messages 
of type barrier reaching, the TS records, in the Barriers 
Memory, the receipt of each message for a particular barrier, 
until it has received such messages from all sub-trees 
involved in the barrier, at which point it updates the Barriers 

Memory and broadcasts a barrier reaching message 
downwards. Messages of type lock acquire request the 
acquisition of a specific lock. If the lock is available, the 
Locks Memory is updated with the identifier of the Node 
requesting the lock and a lock acquire message is broadcast 
down the network, signalling the acquisition of the lock and 
the acquiring processor ID. If the lock is unavailable, the 
message is discarded. Unsatisfied requests cause requesting 
processors to wait until a lock release for this requested lock 
is received. After that, the lock request can be re-tried. 
Messages of type lock release update the Locks Memory and 
generate a lock release broadcast signalling the availability of 
the lock. 

Transmitter Down has only one message store, since 
each message is always sent out on all 8 outgoing serial links 
to the lower hierarchical levels. 
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Figure 4: The Top Synchronizer 

3.2 The Intermediate Synchronizer 

The Intermediate Synchronizer (IS), which implements 
the interior nodes of the network tree, are shown in Figure 5. 
The Receiver Down and Transmitter Down are the same as in 
the TS: concentrating incoming messages from lower levels, 
and broadcasting outgoing messages on all links. Transmitter 
Up and Receiver Up units handle single message transfers 
with the immediately superior Synchronizer. Receiver Up 
makes received messages available over the internal data bus 
to other elements as soon as the data of the message is 
available.  The control core executes according to the 
message’s command. Downward messages are forwarded via 
Transmitter Down to all lower level elements immediately in 



order to provide for synchronous receipt across the network in 
as few cycles as possible. The only internal processing is for 
downward messages of type barrier reaching, when the IS 
barrier memory is updated, freeing the barrier locally. 

For upward propagating messages of types reset, 
broadcast, lock acquire and lock release, the control core just 
commands their retransmission via Transmitter Up. Messages 
of type barrier require that the Barriers Memory is accessed 
to verify if the specified barrier has already been created: if 
so, the control core discards the message; if not, the barrier is 
created locally and the message is sent upwards, discarding 
the barrier mask relative to the current level. A barrier 
creation message has its size reduced by 8 bits each time it is 
forwarded. Messages of type barrier reaching update the 
Barriers Memory by clearing the bit in the barrier mask for 
the sub-tree from which the message arrived. If this is the last 
of the mask bits to be zeroed, the message is sent up the 
network; if not, the message is not forwarded, but discarded. 
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Figure 5: The Intermediate Synchronizer 

3.3 The Node 

The Node, structure shown in Figure 6, consists of a PCI 
board installed inside each computer to implement the lowest 
level of the network. Memory within the board is mapped to 
processor addresses over the PCI bus [7]. To send a message, 
the Node processor (NP) writes it to a specific address in the 
PCI bus interface. To discover if a barrier has been reached, 
the NP reads from a set of 256 addresses, each one 
corresponding to a barrier. Lock status (free / not free) is read 
from another set of 256 addresses, each one corresponding to 
a lock. Broadcast messages are read from a range of 1024 
addresses that form a circular list, each address corresponding 
to a specific broadcast message. 

Implementation of the Global Clock requires a 64-bit 
counter in each Node [6], which is incremented at each 

positive transition of the clock signal – Net_clk –, coming 
from the Top Synchronizer. The network design has been 
implemented to guarantee that all Nodes receive the Global 
Clock and any reset message at the same instant. Therefore, it 
can be assured that the counters of Nodes are initialized 
and/or incremented in a synchronous manner, holding the 
same counting (time) value at each clock cycle. 
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Figure 6: Blocks diagram of Node 

Receiver Up and Transmitter Up are essentially the same 
as in the IS. The control core is the element responsible for 
treating the messages deriving from the PCI bus and Receiver 
Up. All messages, without exception, coming from the PCI 
bus are transmitted upwards. All messages received from the 
network via the Receiver Up require action from the control 
core.  

Of the messages originated at the PCI bus, the barrier 
ones require that the Barriers Memory of the Node be 
updated, creating the barrier. When a downward reset 
message is received, the Global Clock counter is reinitialized. 
For downward messages, barrier reaching and lock release, 
the Barriers and Locks Memory are updated respectively. 
Downward broadcast messages are stored in the Broadcast 
Memory, along with the lower-order 48 bits of the Global 
Clock, which record their reception time. Downward lock 
acquire messages update the Locks Memory with the 
identifier of the acquiring Node. 

4 Methods 
To perform validation and evaluation tests of the system 

developed, we implemented the hardware in H.O.T. II FPGA 
development boards [8]. Such a board consists of the basic 



operational circuitry, memory banks and a model 
XC4062XLA–HQ240 FPGA, made by Xilinx [9]. The 
FPGAs development tool chosen was also from Xilinx. The 
experimental system, shown in Figure 7, has a 2-level 
hierarchy with just 2 Nodes and a Top Synchronizer, but no 
Intermediate Synchronizers. Each element is a microcomputer 
with attached H.O.T. II board, programmed to be either a 
Node or a TS. Category 5, Shielded Twisted Pair (STP) 
cables of 5m length with 4-pairs are used to connect the 
elements. 
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Figure 7: Diagram of the environment for experiments 

The machine hosting the TS was used solely to load the 
FPGA with the logic for the TS and to provide power to the 
H.O.T. II board. The machines hosting the Nodes, besides the 
H.O.T. II boards, had 100Base-T Ethernet network interfaces 
to inter-connect them via a switch to create our experimental 
cluster. Communication with the H.O.T. II board and 
uploading of the Node hardware program into the FPGA was 
thorough a Linux driver module developed by the researcher 
teams of DI/UFES and COPPE/UFRJ. The module is loaded 
at operating system initialization. This module issues the 
mapping of the PCI bus to memory positions, enabling 
communication with the FPGA and other board components, 
such as the memories and ports. 

5 Test programs 
To validate the hardware and to evaluate the auxiliary 

network, we implemented a series of small C programs. 
These programs were not intended to perform any productive 
computation but were designed to exercise key characteristics 
of the synchronization network.  

We developed a program that executes a parallel 
computation that uses synchronization via barriers, using the 
Message Passing Interface (MPI) mechanism as software 
support [2]. Figure 8 contains the key elements of that 
program, which implements a barrier in a conventional way 
by software. The bolded line of code implements the barrier.  

The code of Figure 8 was then slightly modified to create 
the code of Figure 9, where 256 barriers are implemented by 
hardware (see bolded lines in Figure 9). This code uses 
software modules that rely on the auxiliary network to 
provide synchronization support.  

Validation and evaluation of the hardware lock required 
the development of test programs in a similar fashion to that 
of the barrier implementation. Figure 10 shows the code that 
contains the call to a hardware implemented lock.  

 

Figure 8: Barrier implemented in software 

Figure 9:  Barrier implemented in hardware 

The test programs developed were instrumented so as to 
enable us to measure lock and barrier times. The code 
instrumentation instruction used was read-time stamp counter 
– rdtsc [10] – via the call SyncGetTsc(). The programs were 
compiled by MPI compiler (mpicc), and run on the two 
processors configured as Nodes. 

 

Figure 10: Lock implemented in hardware 

unsigned int j = atoi(argv[1]) ; 

MPI_Init(&argc, &argv) ; 

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank) ; 

MPI_Comm_size(MPI_COMM_WORLD, &num_procs) ; 

MPI_Barrier(MPI_COMM_WORLD) ; 

unsigned long start_all = SyncGetTsc() ; 

for (k=0;k<j;k++) { 

   for (b=0;b<256;b++) { 

      start = SyncGetTsc() ; 

      MPI_Barrier(MPI_COMM_WORLD)  ; 

      stop = SyncGetTsc() ; 

      … /* Computation of the average barrier time */ 

   } 

} 

unsigned long end_all = SyncGetTsc() ; 

MPI_Finalize() ; 

 

       for (k=0;k<j;k++) { 

           start = SyncGetTsc() ; 

           do { 

SyncGetLock(lock) ; 

 l = SyncVerifyLock(lock) ; 

            } while (l != proc); 

            stop = SyncGetTsc() ; 

            SyncFreeLock(lock) ; 

            … /* Computation of the average lock time */ 

       } 

for (k=0;k<j;k++) { 

   for (barrier=0; barrier <256;b++) { 

      SyncCreateBarrier(barrier, mask); 

      start = SyncGetTsc() ; 

      SyncReachBarrier(barrier) ; 

      SyncVerrifyBarrier(barrier)  ; 

      stop = SyncGetTsc() ; 

         … /* Computation of the average barrier time */ 

   } 

} 



Evaluation was based on the average of the barriers and 
locks times, on the total execution times of the test programs, 
and on the speedup obtained by the hardware implementation 
of barriers in comparison to their software implementation. 
We obtained the duration of a barrier from two timestamp 
readings via SycGetTsc calls placed in defined points of the 
test program. The duration of lock is obtained in similar 
manner, according to Figure 10. Likewise, total execution 
times of a program were acquired. Having gathered all this 
information, these times are computed from the timestamps 
by equation 4.1: 

 
where timetotal is the required time, tinitial and tfinal are the first 
and second timestamps read by SyncGetTsc calls, and fp is the 
frequency of the Global Clock.  

The speedup indicates in which proportion a system is 
faster than another. In this work, we computed the speedup 
according to equation 4.2:  

  
 

where tsoft is the time taken by the software implementation to 
execute a lock or barrier and thard is the time taken by the 
hardware one. 

6 Experiments 
We performed a series of tests, results presented in 

Table 1, on the program that implements barriers in software, 
and another set, results presented in Table 2, on the program 
that implements barriers in hardware. Each series consisted of 
running a program six times, exponentially varying in powers 
of ten the number of barriers created. We measured the 
barriers time and the total execution time of each program 
running each test. 

Table 1: Barrier implementation in software. 

Number of 
barriers (un) 

Average (µs) Total execution time 
of each program (s) 

256     106.064 0.041130420 
2,560 95.284 0.294931485 
25,600 87.773 2.678029310 
256,000 88.905 27.129206158 

2,560,000 89.008 271.460952398 
25,600,000 87.074 2,658.359010029 

 

Table  2: Barrier implementation in hardware. 

Number of 
barriers (un) 

Average  (µs) Total execution time 
of each program (s) 

256 1.713 0.001969581 
2,560 1.906 0.019094939 
25,600 1.656 0.191182427 
256,000 2.059 1.942289606 

2,560,000 1.763 19.861682971 
25,600,000 1.852 199.708281373 

 

As tables 1 and 2 show, the mean times for hardware 
implemented barriers are smaller than for software 
implemented ones. It can also be seen that the total execution 
times of the corresponding programs indicate that those with 
hardware barrier implementation performed considerably 
better (as the frequency of the real-time clock of the Node 
processors is 1.532939GHz, the precision on the time is sub-
nanosecond). 

The chart of Figure 11 displays the speedup between the 
two kinds of barrier implementation. The horizontal 
dimension represents the number of barriers in the execution 
of a test program. The vertical dimension is computed by the 
division of the Average column of Table 1 (mean time of 
barrier in software) by the corresponding column of Table 2 
(mean time of barrier in hardware). These values show that a 
barrier that has been implemented in hardware is, on average, 
around 50 times faster than one that has been implemented in 
software. 
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Figure 11: Speedup for hardware barriers 
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Figure 12: Speedup of total execution time  

Figure 12 presents the process execution time speedup 
for the hardware implementation compared to the software 
one. As the barrier count reaches the value of 256,000, the 
hardware-based program has an execution time 13 times 
smaller than that of the software-based one, while for lower 
barrier counts, around hundreds of barriers, this ratio is 
around 20. 

pinitialfinaltotal ftttime /)( −=    (4.1) 

hardsoft ttspeedup =     (4.2)  



Table 3: Lock implementation in hardware. 

Number of 
locks (un) 

Average (µs) Total execution time 
of each program (s) 

256 1.147 0.002349573 
2,560 1.163 0.023554924 
25,600 1.169 0.237558289 
256,000 1.169 2.380268197 

2,560,000 1.165 23.941582051 

Lock performance tests were performed in a similar way to 
the barrier tests with the program of Figure 10 executed six 
times, exponentially varying the numbers of locks in powers 
of 10. Each run measured the time of each lock and the total 
execution time of the program. Table 3 shows the results. The 
mean times of hardware implemented locks are very close to 
those for barriers. This is expected, as message processing 
and transmission through the auxiliary network is similar for 
both barriers and locks. 

7 Conclusions  
Our experiments validate the proposed synchronization 

design which we believe provides an improved solution over 
similar hardware solutions in the literature for the following 
reasons. The design has better features: two synchronization 
primitives – barrier and lock; a message transmission infra-
structure; and a Global Clock. Moreover, when these 
mechanisms are used with other network resources, our 
system becomes a unique tool for the debugging of parallel 
programs [11]. The tree-structured network architecture 
makes the design readily extendable with a logarithmic 
increase in layers with processing nodes and with 
synchronization overheads scaling at a similar logarithmic 
rate. The performance is similar if not yet provably better than 
other designs, while we consider the implementation costs to 
be low. 

The results obtained from our experiments confirm that 
barriers implemented in hardware perform 40 times faster 
than barriers implemented in software with MPI. The lock 
times that were measured are consistent with the barrier 
times, inducing the belief that the performance of the 
hardware implementation of this primitive would also be 
much superior to an implementation in software. 

As future work, we intend to perform experiments for 
the performance evaluation our auxiliary network as the 
synchronization infrastructure needed for a distributed shared 
memory environment. Cilk [12] is a distributed shared-
memory environment that we envisage as adequate to 
evaluate barriers and locks in this context. 
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