
Hardware Supported Synchronization Primitives for
Clusters

Alberto F. De Souza1, Sotério F. Souza1, Cláudio Amorim2, Priscila Lima1 and Peter Rounce3

 1Departamento de Informática, Universidade Federal do Espírito Santo, Vitória-ES, Brazil
2Programa de Engenharia de Sistemas e Computação – PESC/COPPE, Universidade Federal do Rio de Janeiro,

Rio de Janeiro-RJ, Brazil
3Computer Science Department, University College London, London, United Kingdom

Abstract - Parallel architectures with shared memory are
well suited to many applications, provided that efficient
shared memory access and process synchronization
mechanisms are available. When the parallel machine is a
cluster with physically distributed memory, software based
synchronization mechanisms together with virtual memory
infrastructure can implement Software Distributed Shared
Memory (S-DSM), a shared memory abstraction on a
distributed memory machine. However, the communication
network overload from the emulation can limit the
performance of such systems. This problem motivated our
research, in which we developed a set of synchronization
primitives for S-DSM on reconfigurable hardware. This
hardware implements an auxiliary synchronization network,
which works in parallel to the data communication network.
Experiments evaluating our hardware implementation
against a software one showed that our system increases the
performance of these S-DSM primitives by a factor of 40 or
more.

Keywords: Clusters, Distributed Synchronization, Barriers,
Locks.

1 Introduction
Parallel machines can have shared or distributed

memory. Shared memory parallel machines are easier to
program than distributed memory ones mainly because the
data structures manipulated by parallel algorithms can be
more easily accessed in the former. However, shared memory
parallel machines are harder, and consequently costlier, to
implement. But, it is possible to use software, the virtual
memory infrastructure and the data communication network
of distributed memory machines to emulate shared memory
systems [1]. These shared memory systems are known as
Software-Distributed Shared Memory systems (S-DSM). In
S-DSM systems many processors may possess a copy of a
piece of the shared memory (e.g. a virtual memory page).
Consistency among the copies of these shared items is
guaranteed only at synchronization points of the computation.

Proper selection of synchronization points coupled with
knowledge of the memory consistency model make
programming S-DSM systems as easy as shared memory
systems in most cases.

The implementation of efficient S-DSM systems
demands fast synchronization mechanisms. However, in
many of such systems, synchronization mechanisms exchange
messages between processors through the conventional
communication network in competition with other traffic.
These messages also pass through the network protocol
layers, further slowing synchro-nization. Observation of these
deficiencies motivated us to investigate the hardware
implementation of distributed synchronization mechanisms.
Hence, we have developed a distributed synchronization
system, using reconfi-gurable hardware, where the processors
of a cluster use a separate auxiliary synchronization network
(Figure 1).

To implement our distributed synchronization system we
studied the synchronization mechanisms necessary for S-
DSM, evaluating the importance and viability of a hardware
implementation of a subset of these. Our evaluations led us to
implement two synchronization mechanisms: barrier and
lock. Both are synchronization primitives heavily used in
parallel processing.

When associated with a group of processes, barrier has
the property of not allowing any of them to proceed unless all
members of the group have reached the barrier. Lock controls
access to critical regions. Each lock has an associated token
and, if a process needs to access the lock’s critical region, it
must first request and acquire the token, or lock. Access to a
lock by processes is mutually exclusive, so a process
requesting the lock must wait if the lock is already held by
another process.

We have compared our hardware implemented barrier
primitive with the same primitive implemented in software
using MPI [2]. Our barrier was 40 times faster than the
MPI_Barrier primitive. Our lock operated in a similar time to
our barrier primitive.

Conventional Data Network

Assistant Synchronization Network

SNI

CNI

PN0

SNI

CNI

PN1

SNI

CNI

PNn-2

SNI

CNI

PNn-1

CNI Convencional Network
Interface

SNI Assistant Synchronization
Network Interface

PN Processor Node

Conventional Data Network

Assistant Synchronization Network

SNI

CNI

PN0

SNI

CNI

PN0

SNI

CNI

PN1

SNI

CNI

PN1

SNI

CNI

PNn-2

SNI

CNI

PNn-2

SNI

CNI

PNn-1

SNI

CNI

PNn-1

CNI Convencional Network
Interface

CNI Convencional Network
Interface

SNI Assistant Synchronization
Network Interface

SNI Assistant Synchronization
Network Interface

PN Processor NodePN Processor Node

Figure 1: Distributed synchronization system

2 Related Work
Two works in the literature present results relevant to

our work: the Dietz et al. TTL_PAPERS [3] and the
Hayakawa and Sekiguchi Synchronization and
Communication Controller (SCC) [4].

TTL_PAPERS [3] is an implementation in TTL
hardware of Purdue's Adapter for Parallel Execution and
Rapid Synchronization (PAPERS [5]). This hardware makes
use of the parallel ports of a cluster’s computers in
conjunction with some simple external hardware for the
implementation of a barrier. A single barrier is made available
and all processors of the cluster are members of a single
group, so that they synchronise at this one barrier. The
hardware described does not implement locks.

The shorter time for barrier synchronization in
TTL_PAPERS is 2.5µs for a 4 processor cluster, and it is
estimated that this would not change with the number of PEs.
However, the design of the external hardware changes and its
complexity increases with PE number, and an extendable
system might well have barrier synchronization times that
increase with PE count. Our hardware obtained barrier
synchronization times of 1.686µs on average, which would
increase logarithmically with PE count. We cannot perfectly
compare these times with TTL_PAPERS, as its experiments
use processors with lower frequencies than those in ours.

The SCC [4] implements barriers for clusters using
specialised PCI boards that are inter-connected in a one-
dimensional daisy-chain by 40-way cables such that messages
from one end to the other traverse all the nodes. The “sync-
comm” network produced by the boards provides a dedicated
synchronization network separate from the conventional
network, as does our auxiliary network. As with the
TTL_PAPERS, just a single barrier is available, but a sub-set
of the processors can be selected to participate in the barrier,
and again lock was not provided. Barrier synchronization
times in SCC were 3.2µs and 6.2µs for two and four
processor clusters respectively, whereas experiments on our
hardware with 2-processor clusters gave results inferior than
2µs on average.

3 Hardware synchronization mechanism
Our auxiliary synchronization network consists of a

hierarchical network (Figure 2) that operates through
messages sent by processors via 2 network elements: Nodes
at the bottom associated with the processors, and
Synchronizers in the upper levels.

T.S.

I.S.

I.S.

Node

Layer 1

Layer 2

Layer 3

Layer 4

I.S.

Node

I.S.

I.S.

Node

I.S.

Node

T.S. I.S. NodeTop Syncher Intermediary Syncher Processor Node

0 7 511504

0 7 56 63

0 7

T.S.

I.S.

I.S.

Node

Layer 1

Layer 2

Layer 3

Layer 4

I.S.

Node

I.S.

I.S.

Node

I.S.

Node

T.S. I.S. NodeTop Syncher Intermediary Syncher Processor Node

0 7 511504

0 7 56 63

0 7

Figure 2: Topology of the auxiliary network

Our requirements for synchronization were for this
auxiliary network to carry 4 types of messages: two for the
barrier and two for the lock. We augmented these with two
further messages: reset and broadcast. The reset message
initializes the Global Clock, an extra facility provided by the
synchronization network [6], while broadcast provides a
general-purpose message distribution capability. The
auxiliary network is designed on the premise that downward
messages are broadcast to all lower level elements – the
Intermediate Synchronizers (IS) retransmit all such messages
to all lower level elements such that they are received
synchronously. Barriers are implemented by masks
distributed across the Synchronizers. For a particular barrier
(there may be more than one), a synchronizer holds a mask,
the bits of which indicate which of its sub-trees participate in
the barrier: for the synchronizers in the level above the Nodes,
the mask bits indicate which of its attached Nodes are in the
barrier. Figure 3 illustrates the general format of the
messages.

1 C0 C1 C2 D0 D1 Dn 0

start bit command data stop bit

1 C0 C1 C2 D0 D1 Dn 0

start bit command data stop bit

Figure 3: General format of a message

A message is detected through a start bit – a transition
from inactivity (logic 0). After this bit, three command bits
are sent containing the message code, which indicate the
operations to be carried out. A number of data bits, varying
from zero to 76, follow, and a message terminates with the
control stop-bit, forcing the line to inactive. Of the 8
commands available, only 6 are used with the rest reserved
for future use. The six commands, or message types, are
detailed below:

reset. Initializes the Global Clock. This command is
passed up in the hierarchy of Synchronizers until it reaches
the top. Then, it goes down initializing all the Node Global

Clock counters by synchronously arriving at each of the
Nodes [6]. A reset message has no data bits.

barrier. Creates a barrier. This message traverses the
network to the top, configuring a barrier. All Nodes
participating in the barrier send a barrier creation message,
though not all reach the top. Synchronizers that have already
come in contact with the barrier message do not propagate it
up. Barrier mask information is propagated as data via these
messages to the Synchronizers indicating who participates of
the barrier.

barrier reaching. Informs the Synchronizer that a
particular barrier has been reached. When all Nodes or
Synchronizers connected to a particular Synchronizer have
indicated that they have reached a barrier, this Synchronizer
informs the one above it of this fact, unless it is the Top
Synchronizer, when the barrier is considered to be completed.
At this point, the Top Synchronizer sends a message of the
same kind down the hierarchy to signal that the barrier has
completed. Barrier masks in the Synchronizers have their bits
cleared as this message propagate downward.

broadcast. Disseminates a message with a 76-bit data
field throughout the network. The data content is user defined.
A broadcast message first goes up the hierarchy and then
goes down to reach all Nodes.

lock acquire. Requests a lock. A lock request traverses
the network to the top. If the Top Synchronizer verifies that
the lock is free, it sends a lock acquire message down the tree,
giving all Nodes the ID of the lock’s acquiring Node,
otherwise the message is discarded.

lock release. Frees a lock. The message traverses the
network to the top before being broadcast down, informing all
Nodes that the lock has been freed.

3.1 The Top Synchronizer

 The Top Synchronizer (TS), see Figure 4, is unique,
occupying the root of the auxiliary network tree. It is
responsible for the control of creation and liberation of
barriers, and for the granting of all locks. The TS has eight
incoming and outgoing serial ports for communication with
the next lower level of the network. At the top right of Figure
4 is shown the 64 MHz Pulse Generator that synchronizes the
auxiliary network and increments the Global Clock.

Receiver Down has an 8-entry store for incoming
messages on its 8 incoming serial links. It signals the control
core with the identity of the incoming port on which a
message has been received. The control core reads the
message via the internal bus, identifies the type and acts
accordingly. Messages of type reset and broadcast are sent on
all outgoing serial ports without any local action. Messages of
type barrier cause the synchronizer to create the barrier. On
receipt of the first message about the creation of a specific
barrier, the barrier memory is updated; subsequent barrier
messages for this same barrier are discarded. With messages
of type barrier reaching, the TS records, in the Barriers
Memory, the receipt of each message for a particular barrier,
until it has received such messages from all sub-trees
involved in the barrier, at which point it updates the Barriers

Memory and broadcasts a barrier reaching message
downwards. Messages of type lock acquire request the
acquisition of a specific lock. If the lock is available, the
Locks Memory is updated with the identifier of the Node
requesting the lock and a lock acquire message is broadcast
down the network, signalling the acquisition of the lock and
the acquiring processor ID. If the lock is unavailable, the
message is discarded. Unsatisfied requests cause requesting
processors to wait until a lock release for this requested lock
is received. After that, the lock request can be re-tried.
Messages of type lock release update the Locks Memory and
generate a lock release broadcast signalling the availability of
the lock.

Transmitter Down has only one message store, since
each message is always sent out on all 8 outgoing serial links
to the lower hierarchical levels.

Receiver
Down

Transmitter
Down

Barrier Memory

Lock Memory

Core
Control

Rx_down_0-7 Tx_down_0-7 Sync_bsy_0-7 Net_clk_0-7

Net_clk

Control

Data

FPGA

FPGA Borderline Net_clk Frequency Field

Pulse generator

Net_clk

Receiver
Down

Transmitter
Down

Barrier Memory

Lock Memory

Core
Control

Rx_down_0-7 Tx_down_0-7 Sync_bsy_0-7 Net_clk_0-7

Net_clk

Control

Data

FPGA

FPGA BorderlineFPGA Borderline Net_clk Frequency Field

Pulse generatorPulse generator

Net_clk

Figure 4: The Top Synchronizer

3.2 The Intermediate Synchronizer

The Intermediate Synchronizer (IS), which implements
the interior nodes of the network tree, are shown in Figure 5.
The Receiver Down and Transmitter Down are the same as in
the TS: concentrating incoming messages from lower levels,
and broadcasting outgoing messages on all links. Transmitter
Up and Receiver Up units handle single message transfers
with the immediately superior Synchronizer. Receiver Up
makes received messages available over the internal data bus
to other elements as soon as the data of the message is
available. The control core executes according to the
message’s command. Downward messages are forwarded via
Transmitter Down to all lower level elements immediately in

order to provide for synchronous receipt across the network in
as few cycles as possible. The only internal processing is for
downward messages of type barrier reaching, when the IS
barrier memory is updated, freeing the barrier locally.

For upward propagating messages of types reset,
broadcast, lock acquire and lock release, the control core just
commands their retransmission via Transmitter Up. Messages
of type barrier require that the Barriers Memory is accessed
to verify if the specified barrier has already been created: if
so, the control core discards the message; if not, the barrier is
created locally and the message is sent upwards, discarding
the barrier mask relative to the current level. A barrier
creation message has its size reduced by 8 bits each time it is
forwarded. Messages of type barrier reaching update the
Barriers Memory by clearing the bit in the barrier mask for
the sub-tree from which the message arrived. If this is the last
of the mask bits to be zeroed, the message is sent up the
network; if not, the message is not forwarded, but discarded.

Rx_upTx_up

Transmitter
Down

Barrier Memory

Core
Control

Receiver
Up

Net_clk

Transmitter
Up

Sync_bsy

FPGA

Receiver
Down

Rx_down_0-7 Net_clk_0-7

Net_clk

Tx_down_0-7Sync_bsy_0-7

Control
Data

FPGA Borderline Net_clk Frequency Field

Rx_upTx_up

Transmitter
Down

Barrier Memory

Core
Control

Receiver
Up

Net_clk

Transmitter
Up

Sync_bsy

FPGA

Receiver
Down

Rx_down_0-7 Net_clk_0-7

Net_clk

Tx_down_0-7Sync_bsy_0-7

Control
Data

FPGA BorderlineFPGA Borderline Net_clk Frequency Field

Figure 5: The Intermediate Synchronizer

3.3 The Node

The Node, structure shown in Figure 6, consists of a PCI
board installed inside each computer to implement the lowest
level of the network. Memory within the board is mapped to
processor addresses over the PCI bus [7]. To send a message,
the Node processor (NP) writes it to a specific address in the
PCI bus interface. To discover if a barrier has been reached,
the NP reads from a set of 256 addresses, each one
corresponding to a barrier. Lock status (free / not free) is read
from another set of 256 addresses, each one corresponding to
a lock. Broadcast messages are read from a range of 1024
addresses that form a circular list, each address corresponding
to a specific broadcast message.

Implementation of the Global Clock requires a 64-bit
counter in each Node [6], which is incremented at each

positive transition of the clock signal – Net_clk –, coming
from the Top Synchronizer. The network design has been
implemented to guarantee that all Nodes receive the Global
Clock and any reset message at the same instant. Therefore, it
can be assured that the counters of Nodes are initialized
and/or incremented in a synchronous manner, holding the
same counting (time) value at each clock cycle.

Barrier Memory

Core
Control

Net_clk

Receiver
Up

Net_clk

Transmitter
Up

Rx_upTx_up
Sync_bsy

Lock Memory

Broadcast
Memory

PCI BUS

Pci_clk

FPGA

HOTII Board

Control
Data

PCICore

FPGA Borderline

Frequency Net_clk domain

Frequency Pci_clk domain

HOTII Board

Global
Clock

Barrier Memory

Core
Control

Net_clk

Receiver
Up

Net_clk

Transmitter
Up

Rx_upTx_up
Sync_bsy

Lock Memory

Broadcast
Memory

PCI BUS

Pci_clk

FPGA

HOTII Board

Control
Data

PCICore

FPGA Borderline

Frequency Net_clk domain

Frequency Pci_clk domain

HOTII Board

Global
Clock

Figure 6: Blocks diagram of Node

Receiver Up and Transmitter Up are essentially the same
as in the IS. The control core is the element responsible for
treating the messages deriving from the PCI bus and Receiver
Up. All messages, without exception, coming from the PCI
bus are transmitted upwards. All messages received from the
network via the Receiver Up require action from the control
core.

Of the messages originated at the PCI bus, the barrier
ones require that the Barriers Memory of the Node be
updated, creating the barrier. When a downward reset
message is received, the Global Clock counter is reinitialized.
For downward messages, barrier reaching and lock release,
the Barriers and Locks Memory are updated respectively.
Downward broadcast messages are stored in the Broadcast
Memory, along with the lower-order 48 bits of the Global
Clock, which record their reception time. Downward lock
acquire messages update the Locks Memory with the
identifier of the acquiring Node.

4 Methods
To perform validation and evaluation tests of the system

developed, we implemented the hardware in H.O.T. II FPGA
development boards [8]. Such a board consists of the basic

operational circuitry, memory banks and a model
XC4062XLA–HQ240 FPGA, made by Xilinx [9]. The
FPGAs development tool chosen was also from Xilinx. The
experimental system, shown in Figure 7, has a 2-level
hierarchy with just 2 Nodes and a Top Synchronizer, but no
Intermediate Synchronizers. Each element is a microcomputer
with attached H.O.T. II board, programmed to be either a
Node or a TS. Category 5, Shielded Twisted Pair (STP)
cables of 5m length with 4-pairs are used to connect the
elements.

T.S.

Node Node

0 1

T.S.

Node Node

0 1

Figure 7: Diagram of the environment for experiments

The machine hosting the TS was used solely to load the
FPGA with the logic for the TS and to provide power to the
H.O.T. II board. The machines hosting the Nodes, besides the
H.O.T. II boards, had 100Base-T Ethernet network interfaces
to inter-connect them via a switch to create our experimental
cluster. Communication with the H.O.T. II board and
uploading of the Node hardware program into the FPGA was
thorough a Linux driver module developed by the researcher
teams of DI/UFES and COPPE/UFRJ. The module is loaded
at operating system initialization. This module issues the
mapping of the PCI bus to memory positions, enabling
communication with the FPGA and other board components,
such as the memories and ports.

5 Test programs
To validate the hardware and to evaluate the auxiliary

network, we implemented a series of small C programs.
These programs were not intended to perform any productive
computation but were designed to exercise key characteristics
of the synchronization network.

We developed a program that executes a parallel
computation that uses synchronization via barriers, using the
Message Passing Interface (MPI) mechanism as software
support [2]. Figure 8 contains the key elements of that
program, which implements a barrier in a conventional way
by software. The bolded line of code implements the barrier.

The code of Figure 8 was then slightly modified to create
the code of Figure 9, where 256 barriers are implemented by
hardware (see bolded lines in Figure 9). This code uses
software modules that rely on the auxiliary network to
provide synchronization support.

Validation and evaluation of the hardware lock required
the development of test programs in a similar fashion to that
of the barrier implementation. Figure 10 shows the code that
contains the call to a hardware implemented lock.

Figure 8: Barrier implemented in software

Figure 9: Barrier implemented in hardware

The test programs developed were instrumented so as to
enable us to measure lock and barrier times. The code
instrumentation instruction used was read-time stamp counter
– rdtsc [10] – via the call SyncGetTsc(). The programs were
compiled by MPI compiler (mpicc), and run on the two
processors configured as Nodes.

Figure 10: Lock implemented in hardware

unsigned int j = atoi(argv[1]) ;

MPI_Init(&argc, &argv) ;

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank) ;

MPI_Comm_size(MPI_COMM_WORLD, &num_procs) ;

MPI_Barrier(MPI_COMM_WORLD) ;

unsigned long start_all = SyncGetTsc() ;

for (k=0;k<j;k++) {

 for (b=0;b<256;b++) {

 start = SyncGetTsc() ;

 MPI_Barrier(MPI_COMM_WORLD) ;

 stop = SyncGetTsc() ;

 … /* Computation of the average barrier time */

 }

}

unsigned long end_all = SyncGetTsc() ;

MPI_Finalize() ;

 for (k=0;k<j;k++) {

 start = SyncGetTsc() ;

 do {

SyncGetLock(lock) ;

 l = SyncVerifyLock(lock) ;

 } while (l != proc);

 stop = SyncGetTsc() ;

 SyncFreeLock(lock) ;

 … /* Computation of the average lock time */

 }

for (k=0;k<j;k++) {

 for (barrier=0; barrier <256;b++) {

 SyncCreateBarrier(barrier, mask);

 start = SyncGetTsc() ;

 SyncReachBarrier(barrier) ;

 SyncVerrifyBarrier(barrier) ;

 stop = SyncGetTsc() ;

 … /* Computation of the average barrier time */

 }

}

Evaluation was based on the average of the barriers and
locks times, on the total execution times of the test programs,
and on the speedup obtained by the hardware implementation
of barriers in comparison to their software implementation.
We obtained the duration of a barrier from two timestamp
readings via SycGetTsc calls placed in defined points of the
test program. The duration of lock is obtained in similar
manner, according to Figure 10. Likewise, total execution
times of a program were acquired. Having gathered all this
information, these times are computed from the timestamps
by equation 4.1:

where timetotal is the required time, tinitial and tfinal are the first
and second timestamps read by SyncGetTsc calls, and fp is the
frequency of the Global Clock.

The speedup indicates in which proportion a system is
faster than another. In this work, we computed the speedup
according to equation 4.2:

where tsoft is the time taken by the software implementation to
execute a lock or barrier and thard is the time taken by the
hardware one.

6 Experiments
We performed a series of tests, results presented in

Table 1, on the program that implements barriers in software,
and another set, results presented in Table 2, on the program
that implements barriers in hardware. Each series consisted of
running a program six times, exponentially varying in powers
of ten the number of barriers created. We measured the
barriers time and the total execution time of each program
running each test.

Table 1: Barrier implementation in software.

Number of
barriers (un)

Average (µs) Total execution time
of each program (s)

256 106.064 0.041130420
2,560 95.284 0.294931485
25,600 87.773 2.678029310
256,000 88.905 27.129206158

2,560,000 89.008 271.460952398
25,600,000 87.074 2,658.359010029

Table 2: Barrier implementation in hardware.

Number of
barriers (un)

Average (µs) Total execution time
of each program (s)

256 1.713 0.001969581
2,560 1.906 0.019094939
25,600 1.656 0.191182427
256,000 2.059 1.942289606

2,560,000 1.763 19.861682971
25,600,000 1.852 199.708281373

As tables 1 and 2 show, the mean times for hardware
implemented barriers are smaller than for software
implemented ones. It can also be seen that the total execution
times of the corresponding programs indicate that those with
hardware barrier implementation performed considerably
better (as the frequency of the real-time clock of the Node
processors is 1.532939GHz, the precision on the time is sub-
nanosecond).

The chart of Figure 11 displays the speedup between the
two kinds of barrier implementation. The horizontal
dimension represents the number of barriers in the execution
of a test program. The vertical dimension is computed by the
division of the Average column of Table 1 (mean time of
barrier in software) by the corresponding column of Table 2
(mean time of barrier in hardware). These values show that a
barrier that has been implemented in hardware is, on average,
around 50 times faster than one that has been implemented in
software.

0

10

20

30

40

50

60

70

256 2,560 25,600 256,000 2,560,000 25,600,000

Number of Barriers

S
pe

ed
up

Figure 11: Speedup for hardware barriers

0

5

10

15

20

25

256 2,560 25,600 256,000 2,560,000 25,600,000

Number of Barriers

S
p

ee
du

p

Figure 12: Speedup of total execution time

Figure 12 presents the process execution time speedup
for the hardware implementation compared to the software
one. As the barrier count reaches the value of 256,000, the
hardware-based program has an execution time 13 times
smaller than that of the software-based one, while for lower
barrier counts, around hundreds of barriers, this ratio is
around 20.

pinitialfinaltotal ftttime /)(−= (4.1)

hardsoft ttspeedup = (4.2)

Table 3: Lock implementation in hardware.

Number of
locks (un)

Average (µs) Total execution time
of each program (s)

256 1.147 0.002349573
2,560 1.163 0.023554924
25,600 1.169 0.237558289
256,000 1.169 2.380268197

2,560,000 1.165 23.941582051

Lock performance tests were performed in a similar way to
the barrier tests with the program of Figure 10 executed six
times, exponentially varying the numbers of locks in powers
of 10. Each run measured the time of each lock and the total
execution time of the program. Table 3 shows the results. The
mean times of hardware implemented locks are very close to
those for barriers. This is expected, as message processing
and transmission through the auxiliary network is similar for
both barriers and locks.

7 Conclusions
Our experiments validate the proposed synchronization

design which we believe provides an improved solution over
similar hardware solutions in the literature for the following
reasons. The design has better features: two synchronization
primitives – barrier and lock; a message transmission infra-
structure; and a Global Clock. Moreover, when these
mechanisms are used with other network resources, our
system becomes a unique tool for the debugging of parallel
programs [11]. The tree-structured network architecture
makes the design readily extendable with a logarithmic
increase in layers with processing nodes and with
synchronization overheads scaling at a similar logarithmic
rate. The performance is similar if not yet provably better than
other designs, while we consider the implementation costs to
be low.

The results obtained from our experiments confirm that
barriers implemented in hardware perform 40 times faster
than barriers implemented in software with MPI. The lock
times that were measured are consistent with the barrier
times, inducing the belief that the performance of the
hardware implementation of this primitive would also be
much superior to an implementation in software.

As future work, we intend to perform experiments for
the performance evaluation our auxiliary network as the
synchronization infrastructure needed for a distributed shared
memory environment. Cilk [12] is a distributed shared-
memory environment that we envisage as adequate to
evaluate barriers and locks in this context.

8 References
[1] C. Amza et al. TreadMarks: Shared Memory Computing

on Networks of Workstations. IEEE Computer, February
1996, p. 18-28.

[2] MPI: A Message-Passing Interface Standard. Massage
Passing Interface Forum, V1.1, June 1995.
http://www.mpi-forum.org/docs/mpi-11-html/mpi-
report.html.

[3] H. G. Dietz, R. Hoare, and T. Mattox. A fine-grain parallel
architecture based on barrier synchronization. International
Conference on Parallel Processing, 1996, pp. 247-250.

[4] K. Hayakawa, S. Sekiguchi. Design and Implementation of
a Synchronization and Communication Controller for
Cluster Computing Systems. 4º Int. Conference on High
Performance Computing in Ásia-Pacific Region, Vol. 1,
May 2000, pp. 76-81.

[5] T. Muhammad. Hardware barrier synchronization for a
cluster of personal computers. M.Sc. Dissertation. Purdue
University, May 1995.

[6] C. L. Amorim, A. F. De Souza. Distributed global clock
for clusters of computers. United States Patent No.
20060212738, 21/09/2006.

[7] PCISIG. PCI Local Bus Specification – Revision 2.2.
December 1998.

[8] Virtual Computer Corporation. H.O.T. II – Hardware API
Guide. Version 2.3. Virtual Computer Corporation, 1999a.

[9] Xilinx. XC4000XLA/XV Filed Programmable Gate
Arrays. Version 1.3, Xilinx Product Specification, October
1999.

[10] Intel. Pentium II Processor: Using the RDTSC Instruction
for Performance Monitoring. Application Notes. Intel,
January 1998.

[11] W. Meira Jr., T. LeBlanc, A. Poulos. Waiting time analysis
and performance visualization in carnival. ACM
SIGMETRICS Symposium on Parallel and Distributed
Tools, May 1996.

[12] R. M. da Silva, L. Whately, Lauro, M. C. S. de Castro, C.
Bentes, C. L. Amorim. Runtime Support for Running
Applications with Dynamic and Asynchronous Task
Parallelism in Software DSM Systems. Proceedings of the
17th Simposium on Computer Architecture and High
Performance Computing. Los Alamitos CA/USA : IEEE
Computer Society, 2006. v. 1. p. 1-10

