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Abstract

In multi-label text databases one or more labels, or cat-
egories, can be assigned to a single document. In many
such databases there can be correlation on the assignment
of subsets of the set of categories. This can be exploited
to improve machine learning techniques devoted to multi-
label text categorization. In this paper, we examine a Vir-
tual Generalizing Random Access Memory Weightless Neu-
ral Network (VG-RAM WNN for short) architecture that
takes advantage of the correlation between categories to
improve text-categorization performance. We compared the
performance of this architecture, that we named Data Cor-
related VG-RAM WNN (VG-RAM WNN-COR), with that
of standard VG-RAM WNN using four multi-label catego-
rization performance metrics: one-error, ranking loss, av-
erage precision and hamming loss. In our experiments,
VG-RAM WNN-COR outperformed VG-RAM WNN in three
(one-error, average precision and hamming loss) of the four
metrics considered.

1 Introduction

Most works on text categorization in the literature are
focused on single-label text categorization problems, where
each document may only have a single label [16]. How-
ever, in real-world problems, multi-label categorizationis
frequently necessary [15, 8, 5, 17, 3, 9, 13, 18, 19]. From a
theoretical point of view, single-label categorization ismore
general than multi-label, since an algorithm for single-label
categorization can also be used for multi-label categoriza-
tion: one needs only to transform the multi-label catego-
rization problem inton independent single-label problems,
wheren is the number of possible labels, or categories [16].

However, this equivalence only holds if then categories are
stochastically independent, that is, the association of a cat-
egoryci to a document is independent of the association of
another category,cj , to the same document; however, this is
frequently not the case. Multi-label categorization systems
can take advantage of the correlation between categories in
order to improve their performance.

Virtual Generalizing Random Access Memory Weight-
less Neural Networks (VG-RAM WNN for short) is an ef-
fective machine learning technique which offers simple im-
plementation and fast training and test [2, 10]. In this paper
we present a new VG-RAM WNN architecture that exploits
the correlation between categories. We named this archi-
tecture Data Correlated VG-RAM WNN (VG-RAM WNN-
COR, for short). Different from standard VG-RAM WNN’s
neurons, which can only assign a single category to a docu-
ment, in VG-RAM WNN-COR each neuron can assign one
or more categories to a document simultaneously.

Several techniques for multi-label categorization have
been proposed, such as multi-label decision trees [5], ker-
nel methods [8, 3] or neural networks [13, 18], and
many of them specifically for multi-label text categoriza-
tion [11, 15, 17, 9, 13, 18]. In a previous work [6], we
compared the VG-RAM WNN performance with that of the
multi-label lazy learning technique (ML-KNN) proposed
by Zhang and Zhou [19]. Their technique achieved higher
performance than many well-established algorithms in sev-
eral multi-label problems [19]; however, our experiments
showed that VG-RAM WNN outperforms ML-KNN in a
number of multi-label text categorization metrics.

We evaluated the performance of VG-RAM WNN-COR
on the categorization of companies according to their eco-
nomic activities. The automation of the categorization of
companies according to their economic activities described
in free text format is a huge challenge for the Brazilian gov-



ernmental administration in the present day. So far, this
task has been carried out by humans, not all of them prop-
erly trained for the job. In our evaluation of VG-RAM
WNN-COR, we have used four multi-label categorization
performance metrics: one-error, ranking loss, average pre-
cision and hamming loss. Our experimental evaluation have
shown that VG-RAM WNN-COR outperforms VG-RAM
WNN in three of the four metrics considered, showing gains
of 22.5% in one-error,9.3% in average precision and16.0%
in hamming loss.

This paper is organized as follows. Section 2 presents
the multi-label text categorization problem and Section 3
our VG-RAM WNN and VG-RAM WNN-COR categoriz-
ers. Section 4 presents our experimental methodology and
analyzes our experimental results. Our conclusions and di-
rections for future work follow in Section 5.

2 Multi-Label Text Categorization

Text categorization may be defined as the task of assign-
ing categories (or labels), from a predefined set of cate-
gories, to documents [16]. In multi-label text categoriza-
tion, one or more categories may be assigned to a document.

Let D be the domain of documents,C = {c1, . . . , c|C|}
a set of pre-defined categories, andΩ = {d1, . . . , d|Ω|} an
initial corpus of documents previously categorized manu-
ally by a domain expert into subsets of categories ofC. In
multi-label learning, the training(-and-validation)setTV =
{d1, . . . , d|TV |} is composed of a number documents, each
associated with a subset of categories ofC. TV is used
to train and validate (actually, to tune eventual parameters
of) a categorization system that associates the appropriate
combination of categories to the characteristics of each doc-
ument in theTV . The test setTe = {d|TV |+1, . . . , d|Ω|},
on the other hand, consists of documents for which the cat-
egories are unknown to the categorization system. After
being (tunned and) trained withTV , the categorization sys-
tem is used to predict the set of categories of each document
in Te.

A multi-label categorization system typically imple-
ments a real-valued functionf : D × C → R that re-
turns a value for each pair〈dj , ci〉 ∈ D × C that, roughly
speaking, represents the evidence for the fact that the test
documentdj should be categorized under the categoryci.
The real-valued functionf(., .) can be transformed into
a ranking functionr(., .), which is a one-to-one mapping
onto{1, 2, . . . , |C|}, such that iff(dj , ck) > f(dj , cl), then
r(dj , ck) < r(dj , cl).

If Cj is the set of pertinent categories for the test docu-
mentdj , then a successful categorization system will tend to
rank categories inCj higher than those not inCj . Those cat-
egoriesci that rank above a thresholdτi (i.e.,ci|f(dj , ci) ≥
τi) are then assigned to the test documentdj .

3 VG-RAM WNN and VG-RAM WNN-COR

RAM-based neural networks [1], also known as weight-
less neural networks (WNN), do not store knowledge in
their connections but in Random Access Memories (RAM)
inside the network’s nodes, or neurons. In spite of their
remarkable simplicity, WNN are very effective as pattern
recognition tools, offering fast training and test, and easy
implementation [2]. However, if the network input is too
large, the memory size of the neurons of WNN becomes
prohibitive, since it must be equal to2n, wheren is the in-
put size. Virtual Generalizing RAM (VG-RAM) networks
are RAM-based neural networks that only require memory
capacity to store the data related to the training set [10].

3.1 VG-RAM WNN Neurons

VG-RAM WNN neurons store the input-output pairs
seen during training, instead of only the output. In the test
phase, the memory of VG-RAM neurons is searched asso-
ciatively by comparing the input presented to the network
with all inputs in the input-output pairs learned. The output
of each VG-RAM neuron is taken from the pair whose in-
put is nearest to the input presented—the distance function
employed by VG-RAM neurons is the hamming distance.
If there is more than one pair at the same minimum distance
from the input presented, the neuron’s output is chosen ran-
domly among these pairs.

Figure 1. VG-RAM WNN lookup table.

Figure 1 shows the lookup table of a VG-RAM neuron
with three synapses (X1, X2 and X3). This lookup ta-
ble contains three entries (input-output pairs), which were
stored during the training phase (entry#1, entry#2 and
entry#3). During the test phase, when an input vector (in-
put) is presented to the network, the VG-RAM test algo-
rithm computes the distance between this input vector and
each input of the input-output pairs stored in the lookup ta-
ble. In the example of Figure 1, the hamming distance from
the input to entry#1 is two, because bothX2 andX3 bits
do not match the input vector. The distance to entry#2 is
one, becauseX1 is the only non-matching bit. The distance
to entry#3 is three, as the reader may easily verify. Hence,
for this input vector, the algorithm evaluates the neuron’s
output,Y , as category2, since it is the output value stored
in entry#2.
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3.2 VG-RAM WNN-COR Neurons

While in VG-RAM WNN each neuron is trained to out-
put a single category for each input vector, in VG-RAM
WNN-COR each neuron may be trained to output a set of
categories for each input vector.

Figure 2 illustrates the lookup table of a VG-RAM
WNN-COR neuron with three synapses (X1, X2 andX3)
and three entries (input-output pairs) stored during the train-
ing phase (entry#1, entry#2 and entry#3). Similar to
VG-RAM WNN, when an input vector is presented to the
network in the test phase, the VG-RAM WNN COR test
algorithm computes the distance between this input vector
and each input of the input-output pairs in the lookup table.
In the example of Figure 2, the hamming distance from the
input to entries#1, #2, and#3 is two, one, and three, re-
spectively. As the input of entry#2 is the nearest to the net-
work input, the output of the VG-RAM WNN COR neuron
is given by categories1 and3, i.e. the value ofY represents
both categories,1 and3.

Figure 2. VG-RAM WNN-COR lookup table.

3.3 Text Categorization with VG-RAM
WNN and VG-RAM WNN-COR

To categorize text documents using VG-RAM WNN,
we represent a document as a multidimensional vector
V = {v1, . . . , v|V |}, where each elementvi corresponds
to a weight associated to a specific term in the vocabu-
lary of interest (see Section 4.2). We use single layer VG-
RAM WNN (Figure 3) whose neurons’ synapsesX =
{x1, . . . , x|X|} are randomly connected to the network’s in-
put N = {n1, . . . , n|N |}, which has the same size of the
vectors representing the documents, i.e.,|N | = |V |. Note
that|X | < |V | (our experiments have shown that|X | < |V |
provides better performance). Each neuron’s synapsexi

forms a minchinton cell with the next,xi+1 (x|X| forms
a minchinton cell withx1) [12]. The type of the minchin-
ton cell we have used returns1 if the synapsexi of the cell
is connected to an input elementnj whose value is larger
than that of the elementnk to which the synapsexi+1 is
connected (i.e.nj > nk); otherwise, it returns zero.

During training, for each document in the training
set, the corresponding vectorV is connected to the VG-
RAM WNN’s input N and the neurons’ outputsO =

Figure 3. VG-RAM WNN and VG-RAM WNN-
COR text categorization setup.

{o1, . . . , o|O|} to one of the categories of the document. All
neurons of the VG-RAM WNN are then trained to output
this category with this input vector. The training for this
input vector is repeated for each category associated with
the corresponding document. During test, for each test doc-
ument, the inputs are connected to the corresponding vec-
tor and the number of neurons outputting each category is
counted. The network’s output is computed by dividing the
count of each category by the number of neurons of the net-
work. This output is organized as a vector whose size is
equal to the number of categories. The value of each vec-
tor element varies from0 to 1 and represents the percentage
of neurons which presented the corresponding category as
output (the sum of the values of all elements of this vector
is always equal to1). This way, the output of the network
implements the functionf(., .), defined in Section 2.

To categorize text documents using VG-RAM WNN-
COR we use the same setup of the VG-RAM WNN illus-
trated in Figure 3. In the training phase, for each document
in the training set, the corresponding vectorV is connected
to the input of the VG-RAM WNN COR,N , and the out-
put of its neurons,O, to the set of categories assigned to
the document. Each neuron of the VG-RAM WNN-COR is
trained to output this set with this input vector. During the
test phase, for each test document, the corresponding vector
V is connected to the input of the network,N . The func-
tion f(., .) is computed by dividing the number of votes for
each category by the total number of categories outputted
by the network. The number of votes for each category is
obtained by counting their occurrences in all sets outputted
by the network.

4 Experimental Evaluation

We employed a series of experiments to compare VG-
RAM WWN-COR with VG-RAM WNN. We used a
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database of textual descriptions of economic activities of
companies categorized manually according to a table that
describes each lawful Brazilian economic activity. We pre-
processed this database using standard information retrieval
techniques, and used the resulting data to tune VG-RAM
WNN and VG-RAM WNN-COR and test the performance
of each one according to well known multi-label text cat-
egorization metrics. The following subsections present the
details of our experimental evaluation of VG-RAM WNN-
COR.

4.1 Data Set

The classification of companies according to their eco-
nomic activities is an important step of the process of
obtaining information for statistical analysis of the econ-
omy within a city, state or country. In Brazil, all eco-
nomic activities recognized by law are cataloged in a table
called “Classificaç̃ao Nacional de Atividades Econômicas
(CNAE)” (National Classification of Economic Activi-
ties) [4]. Government officials must find the semantic cor-
respondence between textual descriptions of economic ac-
tivities of companies and one or more entries of the CNAE
table for each new company or any that changes its set of
economic activities.

To compare the performance of VG-RAM WNN-COR
with that of VG-RAM WNN on the categorization of eco-
nomic activities, we used a data set composed of3281 tex-
tual descriptions of economic activities of companies cate-
gorized into a subset of764 CNAE categories. The cate-
gorization of each company in this data set were performed
by Brazilian government officials trained in this task. This
data set also contains the official brief description of each
one of the1183 CNAE categories existing today. We parti-
tioned the whole set of economic activities descriptions into
ten subsets of328 documents (the last one had329) in order
to perform ten-fold cross validation experiments.

To tune VG-RAM WNN and VG-RAM WNN-COR pa-
rameters (number of neurons and number of synapses per
neuron) we used nine of the ten sets of documents men-
tioned above. We divided it again into 10 subsets and used
the first nine for training and the last one for tuning the net-
works.

4.2 Data Preprocessing

We removed a set of stop words and stemmed the re-
sulting words of the data set following the procedure for
Brazilian Portuguese developed by Dias [7]. This removes
stop words such as articles, preposition, pronouns, etc., and
stems the remaining words removing Portuguese gender,
plurals, augmentative, diminutive, etc., producing the vo-
cabulary of interest.

After that, each document in the data set was trans-
formed into the multidimensional vector of weights,V =
{v1, . . . , v|V |}, where|V | is the number of terms that oc-
curs at least once in the current training set. Each element
vi corresponds to the weight associated to each wordi of
the vocabulary of interest present in the document. This
weight is computed according to the standard normalized
tfidf weighting function [16].

4.3 Evaluation Metrics

We have used four multi-label evaluation metrics pro-
posed in [14, 15] for examining the classification perfor-
mance of VG-RAM WNN-COR, namelyone-error, rank-
ing loss, average precision, andhamming loss. The metrics
one-error, ranking loss, and average precision evaluate the
whole ranking derived from the real-valued functionf(., .),
while hamming loss evaluates the exact set of categories
predicted for the test documentdj . We present each of these
metrics below.

One-error (one-errorj) evaluates if the top ranked cate-
gory is present in the set of pertinent categoriesCj of
the test documentdj :

one-errorj =

{

0 if [arg maxc∈Cf(dj , c)] ∈ Cj

1 otherwise.
(1)

where [arg maxc∈Cf(dj , c)] returns the top ranked cat-
egory for the test documentdj .

Ranking Loss (rlossj) evaluates the fraction of category
pairs 〈ck, cl〉, for which ck ∈ Cj and cl ∈ C̄j , that
are reversely ordered for the test documentdj :

rlossj =
|{(ck, cl)|f(dj , ck) ≤ f(dj , cl)}|

|Cj ||C̄j |
(2)

where(ck, cl) ∈ Cj×C̄j , andC̄j is the complementary
set ofCj in C.

Average Precision (average-precisionj) evaluates the av-
erage of precisions computed after truncating the rank-
ing of categories after each categoryci ∈ Cj in turn:

avgprecj =
1

|Cj |

|Cj |
∑

k=1

precisionj(Rjk) (3)

whereRjk is the set of ranked categories that goes
from the top ranked category until a ranking posi-
tion k where there is a categoryci ∈ Cj for dj ,
andprecisionj(Rjk) is the number of pertinent cat-
egories inRjk divided by |Rjk|. If there is a cate-
gory ci ∈ Cj at the positionk andf(dj , ci) = 0 then
precisionj(Rjk) = 0.
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Figure 4. Results of validation experiments aimed at tuning the number of neurons and synapses
per neuron of the networks.

Hamming Loss (hlossj) evaluates how many times the
test documentdj is misclassified, i.e., a category not
belonging to the document is predicted or a category
pertinent to the document is not predicted:

hlossj =
1

|C|
|Pj∆Cj | (4)

wherePj is the set of categories predicted for the test
documentdj , |C| is the number of categories, and∆ is
the symmetric difference between the set of predicted
categoriesPj and the set of pertinent categoriesCj for
the test documentdj .

In this paper, instead of deriving the set of predicted
categories for each test documentdj via a thresholdτi

for each categoryci, such thatci is predicted todj only
if f(dj , ci) ≥ τi, we derived the predicted set fordj

by truncating the ranking of categories in the position
k = |Cj |. In this way, we evaluate the performance
of categorizers under a perfect thresholding policy, by
which the cardinality of the predicted set of categories
is equal to the cardinality of the pertinent set.

For p test documents, the overall performance is ob-
tained by averaging each metric, that is one-error=
1

p

∑p

j=1
one-errorj , rloss = 1

p

∑p

j=1
rlossj , avgprec =

1

p

∑p

j=1
avgprecj , and hloss= 1

p

∑p

j=1
hlossj . The smaller

the value of one-error, ranking loss, and hamming loss,
and the larger the value of average precision, the better the
performance of the categorization system. The best possi-
ble performance occurs when one-error= 0, rloss = 0,
avgprec= 1, and hloss= 0.

4.4 Experimental Results

To tune the parameters of the neural networks under
study we used the metric one-error due to its simplicity

and consequent easy understanding. Figure 4 presents the
results of the validation experiments employed for tuning
the number of neurons and synapses per neuron of the VG-
RAM WNN and VG-RAM WNN-COR. As Figure 4 shows,
the performance of both networks increase (one error de-
creases) with the number of neurons in the x-axis and with
the number of synapses per neuron represented by each
curve, but levels off when the networks have about256
(16 × 16) neurons and1024 synapses per neuron. There-
fore, we used256 neurons and1024 synapses per neuron
for both VG-RAM WNN and VG-RAM WNN-COR in the
final evaluation experiments.

Table 1 shows the results of our performance com-
parison between VG-RAM WNN and VG-RAM WNN-
COR. To produce the results shown in this table, for each
of the ten folds mentioned in Section 4.1, we trained
the networks with4133 documents—1181 descriptions of
CNAE categories and2952 (nine folds) economic activities
descriptions—and tested with328 (one fold) descriptions
of economic activities. Table 1 presents the average of the
ten results obtained for each metric where the best result on
each metric is shown in bold face. As this table shows, VG-
RAM WNN-COR outperforms VG-RAM WNN in terms of
one-error (22.5% smaller), average precision (9.3% higher)
and hamming loss (16.0% smaller), and presents a worse
result in terms of ranking loss (8.5% higher).

Table 1. Categorizers’ performance.

VG-RAM One-Error Ranking Average Hamming
Loss Precision Loss

WNN 0.23323 0.11466 0.64487 0.00350
WNN-COR 0.18079 0.12442 0.70493 0.00294
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Table 2. Partial order.
Evaluation metric Order
One-error WNN-COR≻ WNN
Ranking loss WNN ≻ WNN-COR
Average precision WNN-COR≻ WNN
Hamming loss WNN-COR≻ WNN
Total order WNN-COR (2)≻ WNN (-2)

To make a clearer view of the relative performance of the
algorithms, a partial order≻ is defined for each evaluation
metric, where A1≻ A2 means that the performance of algo-
rithm A1 is statistically better than that of algorithm A2 on
the specific metric (based on two-tailed paired t-test at5%
significance level). The partial order on the two comparing
algorithms in terms of each evaluation metric is summarized
in Table 2.

It is quite possible that A1 performs better than A2 in
terms of some metrics but worse that A2 in terms of other
ones. In this case, it is hard to judge which algorithm is su-
perior. Therefore, in order to give an overall performance
assessment of an algorithm, a score is assigned to it which
takes account of its relative performance with the other al-
gorithm on all metrics. Concretely, for each evaluation met-
ric, if A1 ≻ A2 holds, then A1 is rewarded by a positive
score+1 and A2 is penalized by a negative score−1. Based
on the accumulated score of each algorithm on all evalua-
tion metrics, a total order≻ is defined on the two comparing
algorithms as shown in the last line of Table 2, where A1≻
A2 means that A1 performs better than A2. The accumu-
lated score of each algorithm is also shown in the parenthe-
ses. As this table show, VG-RAM WNN-COR has overall
better performance than VG-RAM WNN for the set of met-
rics considered.

5 Conclusions and Future Work

In this work, we presented an experimental evaluation of
Data Correlated VG-RAM WNN (VG-RAM WNN-COR)
on multi-label text classification and compared its perfor-
mance with that of standard VG-RAM WNN. In order to
do that, we used a database of textual descriptions of eco-
nomic activities of companies categorized manually accord-
ing to lawful Brazilian economic activities. Our results have
shown that VG-RAM WNN-COR outperforms VG-RAM
WNN, showing better performance in three out of four eval-
uation metrics (two-tailed paired t-test at5% significance
level).
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