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Abstract

In automated multi-label text categorization, an auto-
matic categorization system should output a category set,
whose size is unknown a priori, for each document un-
der analysis. Many machine learning techniques have
been used for building such automatic text categorization
systems. In this paper, we examine Virtual Generalizing
Random Access Memory Weightless Neural Networks (VG-
RAM WNN), an effective machine learning technique which
offers simple implementation and fast training and test, as
a tool for building automatic multi-label text categorization
systems. We evaluate the performance ofVG-RAM WNN

on the categorization of Web pages, and compare our re-
sults with that of the multi-label lazy learning approach
ML-KNN, the boosting-style algorithmBOOSTEXTER, the
multi-label decision treeADTBOOST.MH, and the multi-
label kernel methodRANK -SVM. Our experimental com-
parative analysis shows that, on average,VG-RAM WNN

either outperforms the other mentioned techniques or show
similar categorization performance.

1. Introduction

Automatic text categorization is still a very challenging
computational problem to the information retrieval commu-
nities both in academic and industrial contexts. Most works
on text categorization in the literature are focused on single-
label text categorization problems, in which exactly one cat-
egory must be assigned to each document [12]. However,
in real-world problems, multi-label categorization, in which
any number of categories may be assigned to the same doc-
ument, is frequently necessary [11, 5, 7, 6, 3, 13, 14].

From a theoretical point of view, the single-label case
is more general than the multi-label case, since an algo-
rithm for single-label categorization can also be used for
multi-label categorization: one needs only to transform
the multi-label categorization problem inton independent

single-label problems, wheren is number of possible cate-
gories, or labels [12]. However, this equivalence only holds
if then categories are stochastically independent, that is, the
association of a categoryci to a document is independent of
the association of another category,cj , to the same docu-
ment. However, this frequently is not the case. Fortunately,
several approaches specially designed for multi-label cate-
gorization have been proposed, such as decision trees [5, 6],
kernel methods [7, 3] or neural networks [10, 13], and
many of them specifically for multi-label text categoriza-
tion [7, 11, 6, 10, 13, 14].

In this paper, we present an experimental evaluation
of the performance of virtual generalizing random access
memory weightless neural networks (VG-RAM WNN [8])
on multi-label text categorization. VG-RAM WNN is an ef-
fective machine learning technique which offers simple im-
plementation, and fast training and test [2]. We evaluate
the performance of VG-RAM WNN on a real-world multi-
label problem: the categorization of Web pages. Web page
categorization is used by several Web search companies,
such as Google and Yahoo, for helping users navigate the
Internet, and has significant economic value. We analyze
the performance of VG-RAM WNN using four multi-label
categorization metrics:hamming loss, one error, coverage,
andaverage precision[11]. We also compare the VG-RAM

WNN performance, according to these metrics, with that
of the multi-label lazy learning technique ML-KNN [14],
the boosting-style algorithm BOOSTEXTER[11], the multi-
label decision tree ADTBOOST.MH [6], and the multi-label
kernel method RANK -SVM [7]. Our results show that,
on average, VG-RAM WNN either outperforms these tech-
niques or show similar categorization performance.

This paper is organized as follows. Section 2 introduces
the multi-label text categorization problem and the metrics
used to evaluate the performance of the multi-label cate-
gorizers examined. Section 3 briefly introduces VG-RAM

WNN and describes how we have used it for multi-label
text categorization. Section 4 presents our experimental
methodology and analyzes our experimental results. Our
conclusions and directions for future work follow in Sec-
tion 5.



2. Multi-Label Text Categorization

Text categorization may be defined as the task of assign-
ing categories (or labels), from a predefined set of cate-
gories, to documents [12]. In multi-label text categoriza-
tion, one or more categories may be assigned to a document.

Let D be the domain of documents,C = {c1, . . . , c|C|}
a set of pre-defined categories, andΩ = {d1, . . . , d|Ω|} an
initial corpus of documents previously categorized manu-
ally by a domain expert into subsets of categories ofC. In
multi-label learning, the training(-and-validation)setTV =
{d1, . . . , d|TV |} is composed of a number documents, each
associated with a subset of categories ofC. TV is used
to train and validate (actually, to tune eventual parameters
of) a categorization system that associates the appropriate
combination of categories to the characteristics of each doc-
ument in theTV . The test setTe = {d|TV |+1, . . . , d|Ω|},
on the other hand, consists of documents for which the cat-
egories are unknown to the categorization system. After
being (tunned and) trained withTV , the categorization sys-
tem is used to predict the set of categories of each document
in Te.

A multi-label categorization system typically imple-
ments a real-valued functionf : D × C → R that returns
a value for each pair〈dj , ci〉 ∈ D × C that, roughly speak-
ing, represents the evidence for the fact that the test docu-
mentdj should be categorized under the categoryci. The
real-valued functionf(., .) can be transformed into a rank-
ing function r(., .), which is a one-to-one mapping onto
{1, 2, . . . , |C|} such that, iff(dj , c1) > f(dj , c2), then
r(dj , c1) < r(dj , c2). If Cj is the set of proper categories
for the test documentdj , then a successful categorization
system will tend to rank categories inCj higher than those
not in Cj . Those categories that rank above a thresholdτ

(i.e., ck|f(dj , ck) ≥ τ ) are then assigned to the test docu-
mentdj .

We have used the four multi-label evaluation metrics
discussed in [11] for examining the categorization perfor-
mance of VG-RAM WNN, namelyhamming loss, one-error,
coverage, andaverage precision. Whilehamming losseval-
uates the exact set of categories predicted for the test docu-
mentdj , that is, those categories that rank above the thresh-
old τ , the metricsone-error, coverage, andaverage pre-
cision evaluate the real-valued functionf(., .), that is, the
ranking quality of different categories for each test docu-
ment. We present each of these metrics below.

Hamming Loss (hlossj) evaluates how many times the
test documentdj is misclassified, i.e., a category not
belonging to the document is predicted or a category
belonging to the document is not predicted.

hlossj =
1

|C|
|Pj∆Cj | (1)

where |C| is the number of categories and∆ is the
symmetric difference between the set of predicted cat-
egoriesPj and the set of appropriate categoriesCj of
the test documentdj .

One-error (one-errorj) evaluates if the top ranked cate-
gory is present in the set of proper categoriesCj of the
test documentdj .

one-errorj =

{

0 if [arg maxc∈Cf(dj , c)] ∈ Cj

1 otherwise.
(2)

where [arg maxc∈Cf(dj , c)] returns the top ranked cat-
egory for the test documentdj .

Coverage (coveragej) measures how far we need to go
down the rank of categories in order to cover all the
possible categories assigned to a test document.

coveragej = maxc∈Cj
r(dj , c) − 1 (3)

where maxc∈Cj
r(dj , c) returns the maximum rank for

the set of appropriate categories of the test document
dj .

Average Precision (avgprecj) evaluates the average of
precisions computed after truncating the ranking of
categories after each categoryci ∈ Cj in turn:

avgprecj =
1

|Cj |

|Cj |
∑

k=1

precisionj(Rjk) (4)

whereRjk is the set of ranked categories that goes
from the top ranked category until a ranking position
k where there is a categoryci ∈ Cj for the test docu-
mentdj , andprecisionj(Rjk) is the number of perti-
nent categories inRjk divided by |Rjk|. If there is a
categoryci ∈ Cj at the positionk andf(dj , ci) = 0
thenprecisionj(Rjk) = 0.

For p test documents, the overall performance
is obtained by averaging each metric, that is
hloss = 1

p

∑p

j=1
hlossj , one-error= 1

p

∑p

j=1
one-errorj ,

coverage = 1

p

∑p

j=1
coveragej , and avgprec =

1

p

∑p

j=1
avgprecj . The smaller the value ofhamming

loss, one-error, and coverage, and the larger the value
of average precision, the better the performance of the
categorization system. The performance is perfect when
hloss= 0, one-error= 0, coverage= 1

p

∑p

j=1
(|Cj | − 1),

and avgprec= 1.

3. Vg-ram wnn

RAM-based neural networks, also known asn-tuple cat-
egorizers or weightless neural networks (WNN), do not



store knowledge in their connections but in Random Ac-
cess Memories (RAM) inside the network’s nodes, or neu-
rons. These neurons operate with binary input values and
use RAM as lookup tables: the synapses of each neuron col-
lect a vector of bits from the network’s inputs that is used as
the RAM address, and the value stored at this address is the
neuron’s output. Training can be made in one shot and ba-
sically consists of storing the desired output in the address
associated with the input vector of the neuron [1].

In spite of their remarkable simplicity, RAM-based neu-
ral networks are very effective as pattern recognition tools,
offering fast training and test, and easy implementation [2].
However, if the network input is too large, the memory size
of the neurons of WNN becomes prohibitive, since it must
be equal to2n, wheren is the input size. Virtual Generaliz-
ing RAM (VG-RAM) networks are RAM-based neural net-
works that only require memory capacity to store the data
related to the training set [8]. In the neurons of these net-
works, the memory stores the input-output pairs shown dur-
ing training, instead of only the output. In the test phase, the
memory of VG-RAM neurons is searched associatively by
comparing the input presented to the network with all inputs
in the input-output pairs learned. The output of each VG-
RAM neuron is taken from the pair whose input is nearest
to the input presented—the distance function employed by
VG-RAM neurons is thehamming distance. If there is more
than one pair at the same minimum distance from the input
presented, the neuron’s output is chosen randomly among
these pairs.

Figure 1 shows the lookup table of a VG-RAM WNN neu-
ron with three synapses (X1, X2 andX3). This lookup ta-
ble contains three entries (input-output pairs), which were
stored during the training phase (entry#1, entry#2 and en-
try #3). During the test phase, when an input vector (input)
is presented to the network, the VG-RAM WNN test algo-
rithm calculates the distance between this input vector and
each input of the input-output pairs stored in the lookup ta-
ble. In the example of Figure 1, thehamming distancefrom
the input to entry#1 is two, because bothX2 andX3 bits
do not match the input vector. The distance to entry#2 is
one, becauseX1 is the only non-matching bit. The distance
to entry#3 is three, as the reader may easily verify. Hence,
for this input vector, the algorithm evaluates the neuron’s
output,Y , as category2, since it is the output value stored
in entry#2.

To categorize text documents using VG-RAM WNN, we
represent a document as a multidimensional vectorV =
{v1, . . . , v|V |}, where each elementvi corresponds to the
number of times a term in the vocabulary of interest ap-
pears in this document. We use single layer VG-RAM WNN

(Figure 2) whose neurons’ synapsesX = {x1, . . . , x|X|}
are randomly connected to the network’s inputN =
{n1, . . . , n|N |}, which has the same size of the vectors

Figure 1. VG-RAM WNN neuron lookup table.

representing the documents, i.e.,|N | = |V |. Note that
|X | < |V | (our experiments have shown that|X | < |V |
provides better performance). Each neuron’s synapsexi

forms a minchinton cell with the next,xi+1 (x|X| forms
a minchinton cell withx1) [9]. The type of the minchin-
ton cell we have used returns1 if the synapsexi of the cell
is connected to an input elementnj whose value is larger
than that of the elementnk to which the synapsexi+1 is
connected (i.e.nj > nk); otherwise, it returns zero.

Figure 2. VG-RAM WNN architecture.

During training, for each document in the training
set, the corresponding vectorV is connected to the VG-
RAM WNN ’s input N and the neurons’ outputsO =
{o1, . . . , o|O|} to one of the categories of the document. All
neurons of the VG-RAM WNN are then trained to output this
category with this input vector. The training for this input
vector is repeated for each category associated with the cor-
responding document. During test, for each test document,
the inputs are connected to the corresponding vector and the
number of neurons outputting each category is counted. The
network’s output is computed by dividing the count of each
category by the number of neurons of the network. This
output is organized as a vector whose size is equal to the
number of categories. The value of each vector element
varies from0 to 1 and represents the percentage of neurons
which presented the corresponding category as output (the
sum of the values of all elements of this vector is always
equal to1). This way, the output of the network implements
the functionf(., .), defined in Section 2. A thresholdτ may
be used with the functionf(., .) to define the set of cate-
gories to be assigned to the test document.



Table 1. Characteristics of the Web page data sets (after term selection). NC denotes the number of
categories, NT the number of terms in the vocabulary, PMC the percentage of documents belonging
to more than one category, ANC the average number of categories of each document, and PRC the
percentage of rare categories, i.e., those categories associated with less than 1% of the documents
of a the data set.

NC NT Training(-and-validation) set Test set
Data set PMC ANC PRC PMC ANC PRC
Arts&Humanities 26 462 44.50% 1.63 19.23% 43.63% 1.64 19.23%
Business&Economy 30 438 42.20% 1.59 50.00% 41.93% 1.59 43.33%
Computers&Internet 33 681 29.60% 1.49 39.39% 31.27% 1.52 36.36%
Education 33 550 33.50% 1.47 57.58% 33.73% 1.46 57.58%
Entertainment 21 640 29.30% 1.43 28.57% 28.20% 1.42 33.33%
Health 32 612 48.05% 1.67 53.13% 47.20% 1.66 53.13%
Recreation&Sports 22 606 30.20% 1.41 18.18% 31.20% 1.43 18.18%
Reference 33 793 13.75% 1.16 51.52% 14.60% 1.18 54.55%
Science 40 743 34.85% 1.49 35.00% 30.57% 1.43 40.00%
Social&Science 39 1 047 20.95% 1.27 56.41% 22.83% 1.29 58.97%
Society&Culture 27 636 41.90% 1.71 25.93% 39.97% 1.68 22.22%

4. Experimental Evaluation

The Web page data employed in our experiments
was extracted from the Yahoo directory1 (http://
dir.yahoo.com). Currently, the top level of the
Yahoo directory consists of14 Web page categories
(i.e., “Arts&Humanities”, “Business&Economy”, “Com-
puters&Internet”, and so on) and each category is further
categorized into a number of second-level subcategories.
By focusing on these subcategories, one can devise14 inde-
pendent text categorization problems. Zhang and Zhou [14]
used11 of these14 problems to evaluate the performance
of ML-KNN. To reduce the dimensionality of each data set,
they used a simple term selection method based on docu-
ment frequency (the number of documents containing a spe-
cific term)—only the top2% terms with highest document
frequency were retained in the final vocabulary. After term
selection, each document in the data set was also described
as a multidimensional vector using the “Bag-of-Words” rep-
resentation. Table 1 summarizes the characteristics of the
Web page data sets2. For each data set, the training(-and-
validation) set contains2000 documents while the test set
contains3000 documents.

To tune the parameters of the VG-RAM WNN catego-
rizer for these data sets, we divided the2000 documents
training(-and-validation) set of each problem into a1500
documents training set, which was used to inductively build

1Data set available athttp://www.inf.ufes.br/∼alberto/
yahoo.tar.gz.

2The characteristics of the Web page data sets were obtained from the
work presented in [14].

the categorizers, and a500 documents validation set, which
was used to evaluate the performance of the categorizers in
the series of experiments aimed at parameter optimization.
The VG-RAM WNN categorizer has three parameters: (i)
the number of neurons,|O|; (ii) the number of synapses per
neuron,|X |; and (iii) the threshold,τ (Section 3). We tested
networks with number of neurons equal to 256, 512, 1024,
and 2048; number of synapses per neuron equal to 32, 64,
128 and 256; and thresholdτ equal to 0.1, 0.2, 0.3, 0.4, and
0.5. Table 2 shows, for each one of the11 text categoriza-
tion problems, the parameters that yield the best VG-RAM

WNN performance.
Once its parameters are estimated, we can use VG-RAM

WNN to predict the set of categories of the test documents.
We compared VG-RAM WNN categorization performance
with that of: the multi-label lazy learning approach ML-
KNN [14], the boosting-style algorithm BOOSTEXTER[11],
the multi-label decision tree ADTBOOST.MH [6], and the
multi-label kernel method RANK -SVM [7]. We believe that
these categorizers are representative of some of the most
effective multi-label text categorization methods currently
available.

For ML-KNN, the number of nearest neighbors,k, was
set to10, which yield the best performance on a bioinfor-
matic data set studied in [14]. For BOOSTEXTERand ADT-
BOOST.MH, the number of boosting rounds was set to be
500 and50, respectively, because on all data sets studied
in [14], the performance of these two algorithms did not
significantly change after the specified boosting rounds. For
RANK -SVM, polynomial kernels with degree8 were used,
which yield the best performance as shown in the litera-



Table 2. Parameters of VG-RAM WNN that yield the best performance. |O| denotes the number of
neurons, |X | the number of synapses per neuron, and τ the threshold used to compute the output of
the multi-label categorizer.

Data set |O| |X | τ Data set |O| |X | τ

Arts&Humanities 64 1024 0.2 Recreation&Sports 64 1024 0.2
Business&Economy 64 1024 0.2 Reference 64 1024 0.5
Computers&Internet 64 1024 0.4 Science 64 1024 0.2
Education 128 1024 0.4 Social&Science 128 1024 0.4
Entertainment 128 1024 0.3 Society&Culture 64 1024 0.3
Health 128 1024 0.2
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Figure 3. Experimental results of each multi-label learning algorithm on the Web page data sets in
terms of hamming loss, one-error, coverage, and average precision. The smaller the value of hamming loss,
one-error, and coverage, and the larger the value of average precision, the better the performance of the
categorizer.

ture [7]3. For each data set, the multi-label algorithms were
trained with the2000 documents in the the training(-and-
validation) set and tested with the3000 documents in the
test set.

Figures 3(a) to 3(d) show the experimental results of

3The results for ML-KNN, BOOSTEXTER, ADTBOOST.MH, and
RANK -SVM were obtained from the work presented in [14].

each multi-label categorization technique on all the Web
page data sets in terms ofhamming loss, one-error, cov-
erage, andaverage precision, respectively. These plottings
also show the averages for each evaluation metric over all
data sets. On average, VG-RAM WNN performs better than
the other algorithms in terms ofhamming loss, coverage,
andaverage precision, and shows inferior, although com-



parable, performance than the other algorithms in terms of
one-error. It is worth to note that all categorizers exam-
ined here perform poorly in terms ofone-error; on average,
in 45.81% of the documents tested the top-ranked category
was not in the set of appropriate categories (Figure 3(b)).

In terms ofhamming loss(Figure 3(a)), VG-RAM WNN

shows performance equivalent to ADTBOOST.MH and out-
performs ML-KNN, BOOSTEXTERand RANK -SVM, show-
ing average gains of2%, 8%, and2%, respectively. In terms
of coverage(Figure 3(c)), VG-RAM WNN shows a bet-
ter performance than ML-KNN, BOOSTEXTER, and ADT-
BOOST.MH, with average gains of7%, 10% and7%, re-
spectively, and presents a far superior performance than
RANK -SVM, showing an average gain of49% and a max-
imum gain of 61% with the “Social” data set. Finally,
in terms of average precision(Figure 3(d)), VG-RAM

WNN shows performance equivalent to BOOSTEXTERand
ADTBOOST.MH, and performs better than ML-KNN and
RANK -SVM, with average gains of2% and 5%, respec-
tively.

5. Conclusions and Future Work

In this paper, we presented an experimental evaluation
of the performance of Virtual Generalizing Random Access
Memory Weightless Neural Networks (VG-RAM WNN [2])
on multi-label text categorization. We compared the per-
formance of VG-RAM WNN, on the categorization of Web
pages, with that of the multi-label lazy learning technique
ML-KNN [14], the boosting-style algorithm BOOSTEX-
TER [11], the multi-label decision tree ADTBOOST.MH [6],
and the multi-label kernel method RANK -SVM [7]. Our ex-
perimental results showed that, on average, VG-RAM WNN

outperforms the comparing algorithms in terms ofham-
ming loss, coverageand average precision, showing av-
erage gains of up to8% (compared with BOOSTEXTER),
49% (compared with RANK -SVM) and5% (compared with
RANK -SVM), respectively.

A direction for future work is to examine correlated VG-
RAM WNN [4] and other mechanisms for taking advan-
tage of the correlation between categories. Other direction
for further research is to evaluate the categorization perfor-
mance of VG-RAM WNN using different multi-label catego-
rization problems, such as image annotation and gene func-
tion prediction.
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