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Abstract single-label problems, whereis number of possible cate-
gories, or labels [12]. However, this equivalence only kold
In automated multi-label text categorization, an auto- ifthen categories are stochastically independent, that is, the
matic categorization system should output a category set,association of a categoty to a document is independent of
whose size is unknown a priori, for each document un- the association of another categoty, to the same docu-
der analysis. Many machine learning techniques have ment. However, this frequently is not the case. Fortunately
been used for building such automatic text categorization several approaches specially designed for multi-label-cat
systems. In this paper, we examine Virtual Generalizing gorization have been proposed, such as decision trees [5, 6]
Random Access Memory Weightless Neural Netwaks ( kernel methods [7, 3] or neural networks [10, 13], and
RAM WNN), an effective machine learning technique which many of them specifically for multi-label text categoriza-
offers simple implementation and fast training and test, astion [7, 11, 6, 10, 13, 14].
a tool for building automatic multi-label text categorizat In this paper, we present an experimental evaluation
systems. We evaluate the performancé&/GERAM WNN of the performance of virtual generalizing random access
on the categorization of Web pages, and compare our re-memory weightless neural networks ¢&MRAM WNN [8])
sults with that of the multi-label lazy learning approach on multi-label text categorization. & RAM WNN is an ef-
ML-KNN, the boosting-style algorithrBOOSTEXTER the fective machine learning technique which offers simple im-

multi-label decision treeADTBOOST.MH, and the multi- plementation, and fast training and test [2]. We evaluate
label kernel methodRANK-SvM. Our experimental com-  the performance of ¥-RAM WNN on a real-world multi-
parative analysis shows that, on averadgz-RAM WNN label problem: the categorization of Web pages. Web page
either outperforms the other mentioned techniques or showcategorization is used by several Web search companies,
similar categorization performance. such as Google and Yahoo, for helping users navigate the

Internet, and has significant economic value. We analyze
the performance of ¥-rRAM WNN using four multi-label
categorization metrichhamming lossone error, coverage
andaverage precisiofil1]. We also compare the &*RAM
WNN performance, according to these metrics, with that
of the multi-label lazy learning technique UVKNN [14],
Automatic text categorization is still a very challenging the boosting-style algorithm®&0STEXTER[11], the multi-
computational problem to the information retrieval commu- label decision tree ATBOOST.MH [6], and the multi-label
nities both in academic and industrial contexts. Most works kernel method RNk-svm [7].  Our results show that,
on text categorization in the literature are focused onleing on average, 6-RAM WNN either outperforms these tech-
label text categorization problems, in which exactly orte ca niques or show similar categorization performance.
egory must be assigned to each document [12]. However, This paper is organized as follows. Section 2 introduces
in real-world problems, multi-label categorization, iniafn the multi-label text categorization problem and the metric
any number of categories may be assigned to the same doassed to evaluate the performance of the multi-label cate-
ument, is frequently necessary [11, 5, 7, 6, 3, 13, 14]. gorizers examined. Section 3 briefly introduces-¥Am
From a theoretical point of view, the single-label case wNN and describes how we have used it for multi-label
is more general than the multi-label case, since an algo-text categorization. Section 4 presents our experimental
rithm for single-label categorization can also be used for methodology and analyzes our experimental results. Our
multi-label categorization: one needs only to transform conclusions and directions for future work follow in Sec-
the multi-label categorization problem intoindependent  tion 5.

1. Introduction



2. Multi-L abel Text Categorization where |C| is the number of categories am is the
symmetric difference between the set of predicted cat-
Text categorization may be defined as the task of assign-  €goriesP; and the set of appropriate categorigsof
ing categories (or labels), from a predefined set of cate- the test document;.

gories, to documents [12]. In multi-label text categoriza- One-error (one-error;) evaluates if the top ranked cate-
tion, one or more categories may be assigned to a document. gory is present ié the set of proper categofieof the

Let D be the domain of documents,= {ci,...,cc|}
. . L test documend;.
a set of pre-defined categories, &d= {di,...,d|q} an . J

initial corpus of documents previously categorized manu- 0 if [arg max.. f(d;,c)] € C;

ally by a domain expert into subsets of categorie€.ofn one-errof = { 1 otherwise.

multi-label learning, the training(-and-validation) §8t = (2)
{d1,....di7v|} is composed of a number documents, each where [arg max.. f(d;, ¢)] returns the top ranked cat-
associated with a subset of categorieCof TV is used egory for the test documeds.

to train and validate (actually, to tune eventual paranseter
of) a categorization system that associates the apprepriat COverage (coverage;) measures how far we need to go

combination of categories to the characteristics of each do down the rank of categories in order to cover all the
ument in theT'V. The test sef'e = {drv(+1,- .-, djo}, possible categories assigned to a test document.
on the other hand, consists of documents for which the cat-

. ' o coverage = ma r(d;j,c)—1 3
egories are unknown to the categorization system. After 9F Xoec;T(d):¢) 3)
being (tunned and) trained withiV/, the categorization sys- where maxec,(d;, ¢) returns the maximum rank for
tem is used to predict the set of categories of each document the set of appropriate Ca’[egories of the test document

in Te. d..

A multi-label categorization system typically imple- !
ments a real-valued functioh : D x C — R that returns ~ AveragePrecision (avgprec;) evaluates the average of
a value for each paifd;, ¢;) € D x C that, roughly speak- precisio.ns computed after truncatipg the ranking of
ing, represents the evidence for the fact that the test docu-  categories after each categefye C; in turn:
mentd; should be categorized under the categgtyThe
real-valued functiory(.,.) can be transformed into a rank-
ing functionr(.,.), which is a one-to-one mapping onto
{1,2,...,|C|} such that, if f(d;,c1) > f(d;,c2), then

IC;l

1 ..
avgpreg = m Zpreczswnj (Rjk) 4)
k=1

r(dj,c1) < r(dj,c2). If C; is the set of proper categories where R, is the set of ranked categories that goes

for the test document;, then a successful categorization from the top ranked category until a ranking position

system will tend to rank categories @y higher than those k where there is a categoty € C; for the test docu-

not in C;. Those categories that rank above a threshold mentd;, andprecision;(R;y) is the number of perti-

(i.e., ck|f(dj,ck) > 7) are then assigned to the test docu- nent categories i, divided by|R;x|. If there is a

mentd;. categoryc; € C; at the positiork and f(d;,c;) = 0
We have used the four multi-label evaluation metrics thenprecision;(R;r) = 0.

discussed in [11] for examining the categorization perfor-
mance of \G-RAM WNN, namelyhamming lossone-error,
coverageandaverage precisionWhile hamming losgval- 1 —p 1 <—p
uates the exact set of categories predicted for the test doculoSS = 2_;—; hloss, one-error= ;5 ;_, one-erroy,
mentd;, that is, those categories that rank above the thresh-Ccoverage = %2521 coverage, and avgprec =
old 7, the metricsone-error, coverage and average pre- % §:1 avgpreg. The smaller the value ohamming
cision evaluate the real-valued functioft., .), that is, the foss one-error, and coverage and the larger the value
ranking quality of different categories for each test docu- of average precisionthe better the performance of the
ment. We present each of these metrics below. categorization system. The performance is perfect when
_ _ hloss= 0, one-error= 0, coverage= 1—1) §:1(|Cj| - 1),
Hamming Loss (hloss;) evaluates how many times the and avgpree= 1.
test documend; is misclassified, i.e., a category not
belonging to the document is predicted or a category
belonging to the document is not predicted.

For p test documents, the overall performance
is obtained by averaging each metric, that is

3.Vg-ram wnn

1 RAM-based neural networks, also knownatuple cat-

hloss = mleAle (1) egorizers or weightless neural networks (WNN), do not



store knowledge in their connections but in Random Ac- lookup table | X; | X; | X; Y
cess Memories (RAM) inside the network’s nodes, or neu- entry #1 1 1 0 | category 1
rons. These neurons operate with binary input values and entry #2 0 0 1 category 2
use RAM as lookup tables: the synapses of each neuron col- entry #3 0 1 0 category 3
lect a vector of bits from the network’s inputs that is used as T 7 7 !
the RAM address, and the value stored at this address is the input 1 0 1 | category2

neuron’s output. Training can be made in one shot and ba-
sically consists of storing the desired output in the addres
associated with the input vector of the neuron [1].

In spite of their remarkable simplicity, RAM-based neu- representing the documents, i.&N| = |V|. Note that
ral networks are very effective as pattern recognitiongpol |X| < |V| (our experiments have shown thaf| < |V]|
offering fast training and test, and easy implementatign [2 provides better performance). Each neuron’s synapse
However, if the network input is too large, the memory size forms a minchinton cell with the next;;; (z|x| forms
of the neurons of WNN becomes prohibitive, since it must a minchinton cell withz;) [9]. The type of the minchin-
be equal t@", wheren is the input size. Virtual Generaliz- ton cell we have used returasf the synapse:; of the cell
ing RAM (VG-RAM) networks are RAM-based neural net- is connected to an input elemeimf whose value is larger
works that only require memory capacity to store the datathan that of the element;, to which the synapse; is
related to the training set [8]. In the neurons of these net- connected (i.en; > ny); otherwise, it returns zero.
works, the memory stores the input-output pairs shown dur-

Figure 1. VG-RAM WNN neuron lookup table.

ing training, instead of only the output. In the test phase, t o e o) e | e ]
memory of VG-RAM neurons is searched associatively by m
comparing the input presented to the network with all inputs neurons O | 0, | [ 0, |

in the input-output pairs learned. The output of each VG- . .
RAM neuron is taken from the pair whose input is nearest cells
to the input presented—the distance function employed by

VG-RAM neurons is théhamming distancdf there is more synapses X | xp | ¥ || e Yol Y Il
than one pair at the same minimum distance from the input
presented, the neuron’s output is chosen randomly among ~ inputs N | g | o [ ns [ g [ ns [ mg [y [ o [
these pairs.
Figure 1 shows the lookup table of @&WRAM WNN neu- doouments V- | og [ o [ og Jog[os[os[op [ [
ron with three synapse_é((h X and Xs). Th_is Iooku_p ta- Figure 2. VG-RAM WNN architecture.
ble contains three entries (input-output pairs), whichever
stored during the training phase (en#y, entry#2 and en- During training, for each document in the training
try #3). During the test phase, when an input vector (input) set, the corresponding vectdf is connected to the &-
is presented to the network, thecGMRAM WNN test algo- RAM WNN’'s input N and the neurons’ output§® =
rithm calculates the distance between this input vector andy,, 0jo} to one of the categories of the document. Al

each input of the input-output pairs stored in the lookup ta- neurons of the \#-RAM WNN are then trained to output this
ble. In the example of Figure 1, timming distancérom category with this input vector. The training for this input
the input to entry#1 is two, because both, and X bits  yector is repeated for each category associated with the cor
do not match the input vector. The distance to eritfyis responding document. During test, for each test document,
one, becausd; is the only non-matching bit. The distance  the inputs are connected to the corresponding vector and the
to entry#3 is three, as the reader may easily verify. Hence, number of neurons outputting each category is counted. The
for this input vector, the algorithm evaluates the neuron’s network’s output is computed by dividing the count of each
output,Y’, as category, since it is the output value stored category by the number of neurons of the network. This

in entry #2. output is organized as a vector whose size is equal to the
To categorize text documents usings\ARAM WNN, we number of categories. The value of each vector element
represent a document as a multidimensional vebtoe varies from0 to 1 and represents the percentage of neurons
{v1,...,vjv|}, where each element corresponds to the  which presented the corresponding category as output (the
number of times a term in the vocabulary of interest ap- sum of the values of all elements of this vector is always
pears in this document. We use single lay&-RAM WNN equal tol). This way, the output of the network implements
(Figure 2) whose neurons’ synaps¥s= {zi,...,zx|} the functionf(., .), defined in Section 2. A threshotdmay
are randomly connected to the network’s inpt = be used with the functiorf(.,.) to define the set of cate-

{n1,...,nn}, which has the same size of the vectors gories to be assigned to the test document.



Table 1. Characteristics of the Web page data sets (after term selection). NC denotes the number of
categories, NT the number of terms in the vocabulary, PMC the percentage of documents belonging
to more than one category, ANC the average number of categories of each document, and PRC the
percentage of rare categories, i.e., those categories associated with less than 1% of the documents
of a the data set.

NC | NT | Training(-and-validation) set Test set

Data set PMC | ANC PRC PMC | ANC PRC
Arts&Humanities 26 | 462 | 44.50%| 1.63 | 19.23% | 43.63%| 1.64 | 19.23%
Business&Economy| 30 | 438 | 42.20%| 1.59 | 50.00% | 41.93%| 1.59 | 43.33%
Computers&internet 33 | 681 | 29.60%| 1.49 | 39.39% | 31.27%| 1.52 | 36.36%

Education 33 | 550 | 33.50%| 1.47 | 57.58% | 33.73%| 1.46 | 57.58%
Entertainment 21 | 640 | 29.30%| 1.43 | 28.57% | 28.20%| 1.42 | 33.33%
Health 32 | 612 | 48.05%| 1.67 | 53.13% | 47.20%| 1.66 | 53.13%
Recreation&Sports | 22 | 606 | 30.20%| 1.41 | 18.18% | 31.20%| 1.43 | 18.18%
Reference 33 | 793 | 13.75%| 1.16 | 51.52% | 14.60%| 1.18 | 54.55%
Science 40 | 743 | 34.85%| 1.49 | 35.00% | 30.57%| 1.43 | 40.00%

Social&Science 39 | 1047| 20.95%| 1.27 | 56.41% | 22.83%| 1.29 | 58.97%
Society&Culture 27 | 636 | 41.90%| 1.71 | 25.93% | 39.97%| 1.68 | 22.22%

4. Experimental Evaluation the categorizers, ands®0 documents validation set, which
was used to evaluate the performance of the categorizers in

The Web page data employed in our experiments the series of experiments ajmed at parameter optimizatign.
was extracted from the Yahoo directdryhtt p:// The VG-RAM WNN categorizer has three parameters: (i)
di r.yahoo. com). Currently, the top level of the the number of neuron&)|; (ii) the number of synapses per
Yahoo directory consists ofi4 Web page categories neuron|X|; and (iii) the thresholds (Section 3). We tested
(i.e., “Arts&Humanities”, “Business&Economy”, “Com- networks with number of neurons equal to 256, 512, 1024,
puters&Internet”, and so on) and each category is further@nd 2048; number of synapses per neuron equal to 32, 64,
categorized into a number of second-level subcategories128 and 256; and threshotdequal to 0.1, 0.2, 0.3, 0.4, and
By focusing on these subcategories, one can davigede- 05 Table 2 shows, for each one of t_hletext categoriza-
pendent text categorization problems. Zhang and Zhou [14]ti0n problems, the parameters that yield the bestRAM
used11 of thesel4 problems to evaluate the performance WNN performance.
of ML-KNN. To reduce the dimensionality of each data set, ~Once its parameters are estimated, we can UG&NM
they used a simple term selection method based on docuWNN to predict the set of categories of the test documents.
ment frequency (the number of documents containing a speWe compared %-RAM WNN categorization performance
cific term)—only the to@% terms with highest document Wwith that of: the multi-label lazy learning approachLM
frequency were retained in the final vocabulary. After term KNN [14], the boosting-style algorithm@®oSTEXTER[11],
selection, each document in the data set was also describethe multi-label decision tree ®rBo0osT.MH [6], and the
as a multidimensional vector using the “Bag-of-Words” rep- multi-label kernel method RNK-svM [7]. We believe that
resentation. Table 1 summarizes the characteristics of thghese categorizers are representative of some of the most
Web page data sétsFor each data set, the training(-and- effective multi-label text categorization methods cuthen
validation) set contain8000 documents while the test set available.
contains3000 documents. For ML-KNN, the number of nearest neighboks,was

To tune the parameters of theGVRAM WNN catego- set to10, which yield the best performance on a bioinfor-
rizer for these data sets, we divided @0 documents  matic data set studied in [14]. Fod®STEXTERand ADT-
training(-and-validation) set of each problem intd &0 BOOST.MH, the number of boosting rounds was set to be
documents training set, which was used to inductively build 500 and 50, respectively, because on all data sets studied

1Data set available dttt p: / / www. i nf . uf es. br/ ~al bert o/ ir-] [14]’ the performance of these_ -tWO algorithms did not
yahao. tar. pz. P ’ ) ) significantly change after the specified boosting rounds. Fo

RANK-sVM, polynomial kernels with degrewere used,

2The characteristics of the Web page data sets were obtaioetiie ! i - )
work presented in [14]. which yield the best performance as shown in the litera-




Table 2. Parameters of VG-RAM WNN that yield the best performance. |O| denotes the number of
neurons, |X|the number of synapses per neuron, and 7 the threshold used to compute the output of
the multi-label categorizer.

Data set O] | |X| | = | Dataset o] | |X| | 7
Arts&Humanities 64 | 1024 | 0.2 | Recreation&Sportg 64 | 1024 | 0.2
Business&Economy| 64 | 1024 | 0.2 | Reference 64 | 1024 | 0.5
Computers&Iinternet 64 | 1024 | 0.4 | Science 64 | 1024 0.2
Education 128 | 1024 | 0.4 | Social&Science 128 | 1024| 0.4
Entertainment 128 | 1024 | 0.3 | Society&Culture 64 | 1024| 0.3
Health 128 | 1024 0.2
0.08 -Hamming loss 0.8 -One—error
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Figure 3. Experimental results of each multi-label learning algorithm on the Web page data sets in
terms of hamming lossone-error, coverage and average precision The smaller the value of hamming loss
one-error, and coverage and the larger the value of average precisionthe better the performance of the
categorizer.

ture [7F. For each data set, the multi-label algorithms were each multi-label categorization technique on all the Web
trained with the2000 documents in the the training(-and- page data sets in terms bamming lossone-error, cov-
validation) set and tested with tl300 documents in the  erage andaverage precisioprespectively. These plottings
test set. also show the averages for each evaluation metric over all
Figures 3(a) to 3(d) show the experimental results of data sets. On averageGWRAM WNN performs better than
the other algorithms in terms dfamming losscoverage
3The results for MLKNN, BOOSTEXTER ADTBOOST.MH, and andaverage precisionand shows inferior, although com-
RANK-sVM were obtained from the work presented in [14].




parable, performance than the other algorithms in terms ofe Tecnobgico — CNPg-Brasil (grants 308207/2004-1,
one-error. It is worth to note that all categorizers exam- 471898/2004-0, 620165/2006-5, 309831/2007fhan-
ined here perform poorly in terms ofie-error, on average,  ciadora de Estudos e Projetes FINEP-Brasil (grants CT-
in 45.81% of the documents tested the top-ranked category INFRA-PRO-UFES/2005, CT-INFRA-PRO-UFES/2006),
was not in the set of appropriate categories (Figure 3(b)). andFundago Esjrito Santense de Tecnologia FAPES-

In terms ofhamming losgFigure 3(a)), \G-RAM WNN Brasil (grant 37711393/2007) for their support to this re-
shows performance equivalent t@AB00OST.MH and out- search work.
performs MLKNN, BOOSTEXTERand RANK -SVM, show-
ing average gains @f%, 8%, and2%, respectively. Interms  References
of coverage(Figure 3(c)), \G-RAM WNN shows a bet-
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