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Abstract—This paper presents a localization scheme for Ack-
erman steering vehicles, to be used in outdoors autonomous navi-
gation, using a low cost GPS and inclinometer. A complementary
filter fuses the bearing from the inclinometer with the bearing
of the GPS. We then use an Extended Kalman Filter to estimate
the pose of the vehicle and the sensor biases. We validate our
system with experimental results.

I. INTRODUCTION

As stated by Leonard and Durrant-Whyte in 1991 [1],
answering the question “Where I am?” is the first step to
successfully solve an autonomous navigation problem. In
outdoor localization problems, due to its inherent advantages,
the Global Positioning System (GPS) plays a central role in the
majority of the solutions. To overcome the GPS weak points
(temporary loss of the GPS signal and multipath errors), its
measurement is usually fused with an Inertial Measurement
Unit (IMU) [2].

The problem of using a GPS with other sensors for robot
localization has been addressed by many researchers. Bon-
nifait et al. fused the four ABS sensors of a car with GPS
measurement [3]. Georgiev and Allen used a differential GPS
(DGPS), a camera, a compass, and a tilt sensor to estimate the
pose of a skid-steered robot [4]. Bevly and Parkinson used a
DGPS, a radar and a gyroscope to estimate the pose of a
tractor, using an Extended Kalman Filter [5]. In general, most
current localization implementations use expensive DGPS
units, which provide submeter accuracy, and high-grade IMUs.
For instance, the winner of the 2007 Darpa Urban Challenge,
team Tartan Racing [6], used a Applanix POS-LV unit [7],
which integrates a Trimble DGPS, a Honeywell IMU, and
the vehicle speed to produce an estimate of the position and
orientation. However, this kind of solution is cost prohibitive
in many cases. In this paper, we explore the use of low-cost,
off-the-shelf sensors to produce a pose estimation suitable for
autonomous navigation.

We use an Extended Kalman Filter (EKF) to estimate the
pose of the vehicle, and a GPS and an IMU as the sensors
of the system. We also use a string potentiometer and an
encoder to determine the vehicle steering angle and the speed,
respectively. At the heart of the model used in the EKF is
the kinematic model of the Ackerman vehicle. We augment
this model with the bias of the sensors. We also exploit

the key observation that the GPS provides a good but slow
measurement of the heading, while the IMU provides a good
dynamic measurement, by fusing these two measurements
through a complementary filter.

This paper is organized as follows: Section II presents the
model used for the vehicle and the sensors. Section III shows
the proposed pose estimation scheme. Section IV describes the
implementation details and the experimental results. Section V
concludes the paper.

II. VEHICLE AND SENSOR MODEL

The model of the vehicle is based on the Ackerman steering
geometry. While purely a kinematic model, it is a good
representation for slow speeds [8]. Figure 1 shows the vehicle
scheme and the main variables. The pose is defined by its
position (x, y) and the bearing θ. The actuations are the car
speed v and the steering angle δ. The only parameter is the
wheelbase L. The model is

ẋ = v cos(ψ) = v cos
(π

2
− θ
)

(1a)

ẏ = v sin(ψ) = v sin
(π

2
− θ
)

(1b)

θ̇ =
v

L
tan(δ). (1c)

A low cost inclinometer, based on a IMU and a magnetome-
ter, provides a measurement of the bearing; an off-the-shelf
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Fig. 1. Ackerman model.
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GPS provides a measurement of the position. We are also
using the bearing computed by the GPS, which is available
in one of the standard NMEA messages [9]. In general, we
are modeling the output of a sensor as the actual variable plus
a bias, which in turn is modeled as a Wiener process [10].
Figure 2 shows the general scheme for the sensor model.

It is well known that bearing is a critical measurement for
localization [11], since small errors integrate over time. Our
inclinometer has an accuracy of 0.5◦ and 2◦ under static and
dynamic conditions, respectively. Moreover, the inclinometer
measures the magnetic bearing, which, due to the magnetic
declination [12], has an offset with respect to true north.
Magnetic declination varies along the earth and changes slowly
over time. For instance, at our location the declination is 9.23◦

and changes 0.13◦ per year. On the other hand, the bearing
output of the GPS is true north. So we have two measurements
of the same variable, where one provides a fast signal but
with a significant bias, and the other one provides a slow but
accurate output. It is natural to fuse these two measurements
through a complementary filter [10].

Figure 3 shows the complementary filter. The inclinometer
signal θIMU passes through a high-pass filter, while the GPS
signal θGPS passes through a low-pass signal. The output of
the two signals are added to form the fused signal θIMU+GPS .
This fused signal combines the best of two worlds: the
accuracy of the GPS and the fast response of the inclinometer.
Figure 4 shows the result of the complementary filter while
driving the car in an approximate straight line, with a known
bearing of 324◦ . As expected, the low frequency component
of the fused signal follows the bearing computed by the GPS,
which matches the true bearing; at the same time, the fused
signal incorporates the high frequency component of the IMU.

III. POSE ESTIMATION

We define our pose estimation problem as estimating the
vehicle state, defined as xt = [x y θ]T , using wheel encoders,
steering angle, COTS GPS and an IMU-based inclinometer.
The states x and y are the Universal Transverse Mercator
(UTM) [13] coordinates of the vehicle, and θ is the true
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Fig. 2. Sensor model.
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Fig. 3. Complementary filter.

Fig. 4. Complementary filter results.

bearing. Based on the taxonomy proposed by Thrun et al.
[11], we classify our problem as:
• Position tracking problem: The initial pose of the vehicle

is known, and its uncertainty is approximated as unimodal
(Gaussian).

• Static environment.
• Passive localization: The estimator can only observe. It

can’t control the vehicle movement.
• Single vehicle localization.
• “Loosely Coupled System:” Only the position output

from the GPS is used (no access to the internal GPS
raw data).

As an estimator, we use an EKF [10]. The first step to
use an EKF is to determine a model for the vehicle. The
state equations for xt are given by (1). These states must
be augmented to incorporate both the sensor bias and the
complementary filter. The inclinometer bias θB and GPS
biases xB and yB correspond to Wiener processes:

θ̇B = G1w1

ẋB = G2w2

ẏB = G3w3,

(2)

where the wi are white noise random processes with unitary
spectral amplitude, and the Gi are the noise amplitude of each
bias.

Let xhp and xlp be the states of the high pass and low pass
filter of the complementary filter respectively. Referring to Fig.
3, we can write

ẋhp = − 1
Tc
xhp + θIMU

yhp = − 1
Tc
xhp + θIMU

ẋlp = − 1
Tc
xhp +

1
Tc
θIMU

ylp = xlp.

(3)
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Since
θIMU+GPS = yhp + ylp, (4)

we can write a state space representation for the complemen-
tary filter as

[
ẋhp
ẋlp

]
=
[
− 1
Tc

0
0 − 1

Tc

] [
xhp
xlp

]
+
[
1 0
0 1

Tc

] [
θIMU

θGPS

]
θIMU+GPS =

[
− 1
Tc

1
] [xhp
xlp

]
+
[
1 0

] [θIMU

θGPS

]
.

(5)

Figure 5 shows a diagram of the augmented model used for
the EKF, described by (1), (2) and (5). Table I summarizes the
inputs, outputs, and states.

An EKF requires the model to be expressed in the form:

xk+1 = Φkxk + Γuk
yk = Hkxk +Duk.

(6)

To obtain the Φ matrix, we start by finding a linearized
continuous time state space representation of the form

ẋ = Ax+Bu

y = Cx.
(7)

Notice, however, that only (1) is nonlinear. Moreover, since
(1c) is only nonlinear with respect to the inputs, we only need
to linearize (1a) and (1b):

∆̇x = v sin
(π

2
− θ
)

∆̇y = −v cos
(π

2
− θ
)
.

(8)

This leads to the following A matrix:

TABLE I
DESCRIPTION OF THE MODEL VARIABLES.

Inputs
δ Steering angle
v Vehicle speed

Outputs

θIMU Bearing from the IMU
θIMU+GPS Bearing from the complementary filter
θGPS Bearing from the GPS
xGPS X from the GPS
yGPS Y from the GPS

States

θ Heading
x X component of the position
y Y component of the position
θB IMU bias
xB X component of the GPS bias
yB Y component of the GPS bias
xhp High pass filter internal state
xlp Low pass filter internal state

A =



0 0 vo sin
(
π
2 − θo

)
0 0 0 0 0

0 0 −vo cos
(
π
2 − θo

)
0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1

Tc
0

0 0 0 0 0 0 0 −1
Tc


,

(9)
where vo and θo are the current speed and bearing. Then the
Φ matrix can be computed at each iteration as

Φ = eATs , (10)

where Ts is the sampling time. The measurement matrix is
given by

Hk =


0 0 1 1 0 0 0 0
0 0 1 1 0 0 −1

Tc
1

0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

 . (11)

However, the output rates of the sensors we are using are
different: the inclinometer runs at 75[Hz], while the GPS
run at 5[Hz]. Moreover, since the bearing output of the GPS
is based on the relative movement of the unit between two
sampling times, we only consider this measurement as valid
if the vehicle is moving fast enough. We address this issue
by using different measurement matrices depending on the
available measurements. If the vehicle is going faster than
0.5[m/s] and there is available both GPS and inclinometer
data, we use the Hk given by (11). If only an inclinometer
measurement is available, we use

Hk =


0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 . (12)

If we have both an inclinometer and a GPS measurement,
but the vehicle is not moving fast enough, we use

Hk =


0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0

 . (13)

IV. EXPERIMENTAL RESULTS

We tested our algorithms in an electric drive mini-Baja
[14] vehicle, equipped with a GPS and inclinometer unit, as
shown in Fig. 6. In addition, a motor encoder and a string
potentiometer allow us to measure the speed and steering
angle, respectively. The motor drive and two motors attached
to the steering column and the brake, are controlled by a
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Fig. 5. Model used in the EKF.

Fig. 6. Electric mini-Baja vehicle.

National Instrument CompactRIO controller, providing drive-
by-wire capabilities.

The ultimate objective of our project is to be able to perform
autonomous navigation, based on the pose estimated by our
localization scheme. The localization and autonomous naviga-
tion algorithms are implemented in a single board computer
with a Pentium-M processor. The code is written in Python,
using a multi threaded architecture; the SciPy and NumPy
libraries are used for all the matrix computations. A detailed
description of the implementation is available in [15].

One of the threads of our program is dedicated to execute
the EKF. This thread waits until there is a measurement
available from the inclinometer (the fastest of the sensors);
it also check if there is a GPS measurement available, and
depending on that and on the current speed, it computes the
appropriate measurement matrix Hk using equation (11), (12)

or (13), according to the logic described in section III. It then
computes matrices A and Φ, as described by equations (9) and
(10), respectively. The estimate for the current iteration is then
computed using the standard EKF equations:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1

x̂k = x̂−k +Kk(zk −Hkx̂
−
k )

Pk = (I −KkHk)P−k
x̂−k+1 = φkx̂k +Buk
P−k+1 = φkPkφ

T
k +Qk.

(14)

Since we don’t known the process covariance Qk, we tuned
this parameter experimentally, by trial and error.

To show the usefulness of our localization scheme for
autonomous navigation, we implemented a simple autonomous
controller. This controller read waypoints from a user-defined
waypoints queue, where each element of the queue is a tuple
with the UTM coordinates that must be visited. The controller
reads coordinates from the queue, and use these values as
setpoints. When the waypoint is reached a new setpoint is
read from the queue. The process repeats until the queue is
empty.

Figure 7 shows the variables used to define the control
law. The idea is to control the throttle in proportion to the
distance to the goal, and the steering in proportion to the
relative bearing of the setpoint and the actual bearing. Thus,
the control law is:
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Steering = Ks(ψsp − ψ) = Ks

(
arctan

(
ysp − y
xsp − x

)
− ψ

)
Throttle = Kt

√
(xsp − x)2 + (ysp − y)2.

(15)
Due to the nonholonomic constrains of Ackermann steering,

the control law defined by (15) will not work when the car
is close to the goal. We overcome this by going to the next
waypoint when the vehicle is close to the setpoint, or stopping
if there are no more waypoints.

Figure 8 shows some results of the pose estimation algo-
rithm for an experimental run consisting of following a set
of waypoints inside a parking lot. For ground truth, we use
a Trimble GPS Pathfinder Pro XR Receiver that provides an
accuracy better than 15cm after applying a correction based in
the Continuously Operating Reference Stations (CORS) data
[16].

As can be seen, the EKF estimate is able to increase the
accuracy of the GPS to about 1.5 meters part of the time,
while converging to the GPS measurement the remainder of
the time. To quantify the improvement of the estimate over the
GPS measurement, we compute the Root Mean Square Error
(RMSE) for both the GPS and the estimates:

GPSRMSE =

√
1
n

(xGPS − xGT )2 + (yGPS − yGT )2

= 1.8(m),
(16)

EstRMSE =

√
1
n

(x̂− xGT )2 + (ŷ − yGT )2

= 1.2(m).
(17)

where xGT and yGT are the ground truth measurements, and n
is the number of samples. Thus the scheme gives better results
than using the GPS alone.

Fig. 7. Control variables.

V. CONCLUSION

This paper presented a localization scheme for Ackerman
steering vehicles, based on an EKF, using a low-cost, off-
the-shelf GPS, an IMU-based inclinometer, a motor encoder,
and a string potetiometer. The model used for the EKF was
augmented with the biases of the GPS position and the IMU.
A complementary filter fused the bearing computed by the
GPS with the inclinometer measurement, allowing estimation
of the inclinometer bias. The proposed algorithm was tested
experimentally in an electric vehicle, using the estimated pose
to autonomously follow a set of waypoints. The estimated pose
was more accurate than the GPS measurements, producing
smaller RMS and peak errors.
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Fig. 8. EKF results.
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