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Abstract. Virtual Generalizing Random Access Memory Weightless
Neural Networks (Vg-ram wnn) are effective machine learning tools
that offer simple implementation and fast training and test. We exam-
ined the performance of Vg-ram wnn on face recognition using a well
known face database—the AR Face Database. We evaluated two Vg-

ram wnn architectures configured with different numbers of neurons
and synapses per neuron. Our experimental results show that, even when
training with a single picture per person, Vg-ram wnn are robust to var-
ious facial expressions, occlusions and illumination conditions, showing
better performance than many well known face recognition techniques.

1 Introduction

Computerized human face recognition has many practical applications, such as
access control, security monitoring, and surveillance systems, and has been one
of the most challenging and active research areas in computer vision for many
decades [1]. Even though current machine recognition systems have reached a
certain level of maturity, the recognition of faces with different facial expressions,
occlusions, and changes in illumination and/or pose is still a hard problem.

A general statement of the problem of machine recognition of faces can be
formulated as follows: given an image of a scene, identify or verify one or more
persons in the scene using a database of faces. In identification problems, given
a face as input, the system reports back the identity of an individual based on
a database of known individuals; whereas in verification problems, the system
confirms or rejects the claimed identity of the input face. In both cases, the
solution typically involves segmentation of faces from scenes (face detection),
feature extraction from the face regions, recognition, or verification. In this work,
we examined the recognition part of the identification problem only.

Many methods have been used to tackle the problem of face recognition. One
can roughly divide these into (i) holistic methods, (ii) feature-based methods, and



(iii) hybrid methods [1]. Holistic methods use the whole face region as the raw
input to a recognition system. In feature-based methods, local features, such
as the eyes, nose, and mouth, are first extracted and their locations and local
statistics (geometric and/or appearance) are fed into a classifier. Hybrid methods
use both local features and the whole face region to recognize a face.

Among holistic approaches, eigenfaces [2] and fisher-faces [3, 4] have proved
to be effective in experiments with large databases. Feature-based approaches [5–
8] have also been quite successful and, compared to holistic approaches, are less
sensitive to facial expressions, variations in illumination and occlusion. Some of
the hybrid approaches include the modular eigenface method [9], the Flexible
Appearance Model method [10], and a method that combines component-based
recognition with 3D morphable models [11]. Experiments with hybrid methods
showed slight improvements over holistic and feature-based methods.

In this work, we evaluated the performance of virtual generalizing random ac-
cess memory weightless neural networks (Vg-ram wnn [12]) on face recognition
using the AR Face Database [13]. There are many face databases freely available
for research purposes (see [1] for a comprehensive list); we chose the AR Face
Database because we were interested in face recognition under different facial ex-
pressions, types of occlusion and illumination conditions, and this database has
face images of the same people encompassing all these variations. We evaluated
two Vg-ram wnn architectures, one holistic and the other feature-based, each
implemented with different numbers of neurons and synapses per neuron. We
compared the best Vg-ram wnn performance with that of: (i) a holistic method
based on principal component analysis (PCA) [2]; (ii) feature-based methods
based on non-negative matrix factorization (NMF) [5], local non-negative ma-
trix factorization (LNMF) [6], and line edge maps (LEM) [7]; and (iii) hybrid
methods based on weighted eigenspace representation (WER) [9] and attributed
relational graph (ARG) matching [8]. We selected these for comparison because
they are representative of some of the best methods for face recognition present
in the literature. Our results showed that, even training with a single face image
per person, Vg-ram wnn outperformed all mentioned techniques under all face
conditions tested.

This paper is organized as follows. Section 2 introduces Vg-ram wnn and
Section 3 describes how we have used them for face recognition. Section 4
presents our experimental methodology and experimental results. Our conclu-
sions and directions for future work follow in Section 5.

2 Vg-ram wnn

RAM-based neural networks, also known as n-tuple classifiers or weightless neu-
ral networks, do not store knowledge in their connections but in Random Access
Memories (RAM) inside the network’s nodes, or neurons. These neurons operate
with binary input values and use RAM as lookup tables: the synapses of each
neuron collect a vector of bits from the network’s inputs that is used as the RAM
address, and the value stored at this address is the neuron’s output. Training



can be made in one shot and basically consists of storing the desired output in
the address associated with the input vector of the neuron [14].

In spite of their remarkable simplicity, RAM-based neural networks are very
effective as pattern recognition tools, offering fast training and test, in addition
to easy implementation [12]. However, if the network input is too large, the
memory size becomes prohibitive, since it must be equal to 2n, where n is the
input size. Virtual Generalizing RAM (VG-RAM) weightless neural networks
(WNN) are RAM-based neural networks that only require memory capacity to
store the data related to the training set [15]. In the neurons of these networks,
the memory stores the input-output pairs shown during training, instead of only
the output. In the test phase, the memory of Vg-ram wnn neurons is searched
associatively by comparing the input presented to the network with all inputs
in the input-output pairs learned. The output of each Vg-ram wnn neuron is
taken from the pair whose input is nearest to the input presented—the distance
function employed by Vg-ram wnn neurons is the hamming distance. If there
is more than one pair at the same minimum distance from the input presented,
the neuron’s output is chosen randomly among these pairs.

Fig. 1. Vg-ram wnn neuron lookup table.

Figure 1 shows the lookup table of a Vg-ram wnn neuron with three
synapses (X1, X2 and X3). This lookup table contains three entries (input-
output pairs), which were stored during the training phase (entry #1, entry #2
and entry #3). During the test phase, when an input vector (input) is presented
to the network, the Vg-ram wnn test algorithm calculates the distance between
this input vector and each input of the input-output pairs stored in the lookup
table. In the example of Figure 1, the hamming distance from the input to en-
try #1 is two, because both X2 and X3 bits do not match the input vector.
The distance to entry #2 is one, because X1 is the only non-matching bit. The
distance to entry #3 is three, as the reader may easily verify. Hence, for this
input vector, the algorithm evaluates the neuron’s output, Y , as class 2, since it
is the output value stored in entry #2.

3 Face Recognition with Vg-ram wnn

As stated in the Introduction, in this work we examined the recognition part of
the identification problem only. Face segmentation is performed semi-automati-



cally and, thanks to the properties of the Vg-ram wnn architectures employed,
explicit feature extraction (e.g., line edge extraction; eye, nose, or mouth seg-
mentation; etc.) is not required, even though in one of the two Vg-ram wnn

architectures studied some neurons specializes in specific regions of the faces and,
because of that, we say it is feature-based. The other Vg-ram wnn architecture
studied is holistic.

3.1 Holistic Architecture

The holistic architecture has a single bidimensional array of m×n Vg-ram wnn

neurons, N , where each neuron, ni,j , has a set of synapses W = {w1, . . . , w|W |},
which are randomly connected to the network’s bidimensional input, Φ, of u× v

inputs, φi,j (Figure 2). This random interconnection pattern is created when the
network is built and does not change afterwards.

(a) (b) (c)

Fig. 2. The synaptic interconnection pattern of the holistic architecture. (a) Left, input
Φ: in white, the elements φi,j of the input Φ that are connected to neuron n0,0 of N

via w1, . . . , w|W |; right, neuron array N : in white, the neuron n0,0 of N . (b) Left: in
white, the elements φi,j of Φ connected to nm

2
, n
2
; right: in white, the neuron n m

2
, n
2

of
N . (c) Left: in white, the elements of Φ connected to nm,n; right: in white, the neuron
nm,n.

Vg-ram wnn synapses can only get a single bit from the input. Thus, in or-
der to allow our Vg-ram wnn to deal with images, we use minchinton cells [16].
In the proposed Vg-ram wnn architectures, each neuron’s synapse, wt, forms a
minchinton cell with the next, wt+1 (w|W | forms a minchinton cell with w1). The
type of the minchinton cell we have used returns 1 if the synapse wt of the cell is
connected to an input element, φi,j , whose value, xi,j , is larger than the value of
the element φk,l, xk,l, to which the synapse wt+1 is connected (i.e., xi,j > xk,l);
otherwise, it returns zero.

The input face images, I, of ξ×η pixels (Figure 3(a)), are rotated, scaled and
cropped (Figure 3(b)), so that the face in the image fits within the Vg-ram wnn

input, Φ. The rotation, scaling and cropping are performed semi-automatically,
i.e., the position of the eyes are marked manually and, based on this marking,
the face in the image is computationally adjusted to fit into Φ. Before being
copied to Φ, the transformed image is filtered by a Gaussian filter to smooth out
artifacts produced by the transformations (Figure 3(c)).



(a) (b) (c)

Fig. 3. Face image and its preprocessing. (a) Original image; (b) rotated, scaled and
cropped image; and (c) filtered image.

During training, the face image I is transformed and filtered, and its pixels
are copied to the Vg-ram wnn’s input Φ and all ni,j neurons’ outputs, yi,j , are
set to the value of the label associated with the face (an integer). All neurons
are then trained to output this label with this input image. During testing, each
face image I is also transformed, filtered, and copied to the Vg-ram wnn’s
input Φ. After that, all neurons’ outputs yi,j are computed and the number of
neurons outputting each label is counted. The network’s output is the label with
the largest count.

3.2 Feature-Based Architecture

As the holistic architecture, the feature-based architecture has a single bidimen-
sional array of m × n Vg-ram wnn neurons, N , where each neuron, ni,j , has
a set of synapses, W = {w1, . . . , w|W |}, which are connected to the network’s
bidimensional input, Φ, of u× v inputs. The synaptic interconnection pattern of
each neuron ni,j , Ωi,j(W ), is, however, different (Figure 4). In the feature-based
architecture, Ωi,j(W ) follows a bidimensional Normal distribution centered at
φµk,µl

, where µk = i.u
m

and µl = j.v
n

, i.e., the coordinates k and l of the elements
of Φ to which ni,j connects via W follow the probability density functions:
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√
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where σ is a parameter of the architecture. This interconnection pattern mimics
that observed in many classes of biological neurons, and is also created when the
network is built and does not change afterwards.

A comparison between Figure 2 and Figure 4 illustrates the difference be-
tween the interconnection patterns of the holistic and feature-based architec-
tures. In the feature-based architecture (Figure 4), each neuron ni,j monitors
a region of the input Φ and, therefore, specializes in the face features that are
mapped to that region. On the other hand, each neuron ni,j of the holistic ar-
chitecture monitors the whole face (Figure 2).



(a) (b) (c)

Fig. 4. The synaptic interconnection pattern of the feature-based architecture. (a) Left,
input Φ: in white, the elements φi,j of the input Φ that are connected to neuron n0,0 of
N via w1, . . . , w|W |; right, neuron array N : in white, the neuron n0,0 of N . (b) Left: in
white, the elements φi,j of Φ connected to nm

2
, n
2
; right: in white, the neuron n m

2
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2

of
N . (c) Left: in white, the elements of Φ connected to nm,n; right: in white, the neuron
nm,n.

As in the holistic architecture, in the feature-based architecture each neuron’s
synapse, wt, forms a minchinton cell with the next, wt+1, and, before training or
testing, the input face images, I, are rotated, scaled, cropped, filtered and only
then copied to the Vg-ram wnn input Φ. Training and testing are performed
the same way as in the holistic architecture.

4 Experimental Evaluation

We used the AR Face Database [13] to evaluate the performance of Vg-ram

wnn on face recognition. This face database contains over 4,000 color images
corresponding to 135 people’s faces (76 men and 59 women). Images feature
frontal view faces with different facial expressions, illumination conditions, and
occlusions (sun glasses and scarf). The 768×576 pixels pictures were taken under
strictly controlled conditions, but no restrictions on wear (clothes, glasses, etc.),
make-up, hair style, etc. were imposed to participants.

In order to facilitate the comparison with other results in the literature, we
used only the following subset of image types of the AR Face Database [13]:
neutral expression, smile, anger, scream, left light on, right light on, all side
lights on, wearing sun glasses, and wearing scarf. These can be divided into
four groups (see Figure 5): (i) normal (neutral expression); (ii) under expression
variation (smile, anger, scream); (iii) under illumination changes (left light on,
right light on, all side lights on); and (iv) with occlusion (wearing sun glasses,
wearing scarf).

We randomly selected 50 people from the database to tune the parameters of
the Vg-ram wnn architectures (25 men and 25 women). We used one normal
face image of each person to train (50 images), and the smile, anger, wearing sun
glasses, and wearing scarf to evaluate the architectures (200 images) while vary-
ing their parameters. In the following subsections, we describe the experiments
we performed to tune the parameters of the architectures.



(a) (b) (c) (d)

Fig. 5. The AR face database: (a) normal (neutral expression); (b) under expression
variation (smile, anger, scream); (c) under illumination changes (left light on, right
light on, all side lights on); and (d) with occlusion (wearing sun glasses, wearing scarf).

4.1 Holistic Architecture Parameter Tunning

The holistic architecture has three parameters: (i) the number of neurons, m×n;
(ii) the number of synapses per neuron, |W |; and (iii) the size of the network in-
put, u×v. We tested networks with: m×n equal to 2×2, 4×4, 16×16, 32×32 and
64×64; number of synapses per neuron equal to 32, 64, 128 and 256; and u × v

equal to 128×200 (we did not vary u× v to reduce the parameter search space).
Figure 6(a) presents the results of the experiments we carried out to tune the
parameters of the holistic architecture. As Figure 6(a) shows, the performance,
i.e., the percentage of correctly recognized faces (recognition rate) of the holistic
architecture grows with the number of neurons and synapses per neuron; how-
ever, as these numbers increase, the gains in performance decrease forming a
plateau towards the maximum performance. The simplest configuration in the
plateau has around 16×16 neurons and 64 synapses.

4.2 Feature-Based Architecture Parameter Tunning

The feature-based architecture has four parameters: (i) the number of neurons;
(ii) the number of synapses per neuron; (iii) the size of the network input; and
(iv) σ (see Section 3.2). We tested networks with: m × n equal to 2×2, 4×4,
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Fig. 6. Performance tunning: (a) holistic architecture and (b) feature-based architec-
ture.



16×16, 32×32 and 64×64; number of synapses per neuron equal to 32, 64, 128
and 256; u× v equal to 128×200; and σ equal to 10 (we did not vary u × v and
σ to reduce the parameter search space).

Figure 6(b) presents the results of the experiments we conducted to tune
the parameters of the feature-based architecture. As Figure 6(b) shows, the
performance of the feature-based architecture also grows with the number of
neurons and synapses per neuron, and again reaches a plateau at about 32×32
neurons and 128 synapses. However, it is important to note that, in this case,
the plateau is very close to 100% accuracy (99.5%).

4.3 Comparison with Other Techniques

We compared the performance of the holistic and feature-based Vg-ram wnn

architectures with that of other techniques. For that, we took the best Vg-ram

wnn architectures configurations (holistic: 16×16 neurons and 64 synapses per
neuron; feature-based: 32×32 neurons and 128 synapses per neuron), trained
them with the normal face image of all people in the database (135 images),
and tested them with the remaining face images of Figure 5 of all people in
the database (135 images of each face image category). Table 1 summarizes
this comparison, showing one technique on each line, grouped by type, and the
corresponding performance for each face image category on each column.

Table 1. The recognition rate on the AR Face Database. PCA: principal component
analysis [2] (results obtained from [8]); VWH: Vg-ram wnn holistic architecture; NMF:
non-negative matrix factorization [5] (results from [8]); LNMF: local non-negative ma-
trix factorization [6] (results from [8]); LEM: line edge maps [7] (results from [7] with
only 112 people of the AR Face Database); VWF: Vg-ram wnn feature-based archi-
tecture; WER: weighted eigenspace representation [9] (results from [9] with only 50
people of the AR Face Database); and ARG: attributed relational graph matching [8]
(results from [8]).

Type Technique
Category

Smile Anger Scream Glasses Scarf
Left Right All side
light light lights

HOLa PCA 94.1% 79.3% 44.4% 32.9% 2.2% 7.4% 7.4% 2.2%
VWH 98.5% 97.8% 91.1% 66.7% 25.2% 97.8% 95.6% 95.6%

FBAb

NMF 68.1% 50.4% 18.5% 3.7% 0.7% N/Ad N/A N/A
LNMF 94.8% 76.3% 44.4% 18.5% 9.6% N/A N/A N/A
LEM 78.6% 92.9% 31.3% N/A N/A 92.9% 91.1% 74.1%
VWF 99.3% 99.3% 93.3% 85.2% 98.5% 99.3% 98.5% 99.3%

HYBc WER 84.0% 94.0% 32.0% 80.0% 82.0% N/A N/A N/A
ARG 97.8% 96.3% 66.7% 80.7% 85.2% 98.5% 96.3% 91.1%

aHOL: holistic techniques. bFBA: feature-based techniques. cHYB: hybrid techniques.
dN/A: not available.



As Table 1 shows, the Vg-ram wnn holistic architecture (VWH) performed
better than all holistic and feature-based techniques examined in all face im-
age categories. It also performed better than the hybrid techniques, except for
the categories with occlusion and single side illumination. That was expected,
since occlusions and single side illumination compromise eventual similarities
between the input patterns learned by the VWH neurons and those collected
by its synapses from a partially occluded or illuminated face. Nevertheless, it is
important to note the overall performance achieved by VWH, which is better
than that of several other relevant techniques from literature.

The Vg-ram wnn feature-based architecture (VWF) performed better than
all other techniques examined in all categories, in many cases for a significant
margin. This performance is the result of two factors. First, each VWF (or VWH)
synapse collects the result of a comparison between two pixels, executed by its
corresponding minchinton cell. Our best VWF has 128 synapses per neuron and
32×32 neurons. Therefore, during test, 131072 (128×32×32) such comparisons
are executed on an input face image and the results are checked against equiv-
alent results learned from training images. This amount of pixel comparisons
allows not only high discrimination capability but also generalization. Second,
thanks to the characteristics of the VWF architecture, i.e., its synaptic inter-
connection pattern, each VWF neuron monitors a specific region of the face
only, which reduces the overall impact of occlusions and varying illumination
conditions on recognition performance.

5 Conclusions and Future Work

In this work, we presented an experimental evaluation of the performance of
Virtual Generalizing Random Access Memory Weightless Neural Networks (Vg-

ram wnn [12]) on face recognition. We presented two Vg-ram wnn face recog-
nition architectures, one holistic and the other feature-based, and examined its
performance with a well known face database, the AR Face Database. This
database is challenging for face recognition systems because it has images with
different facial expressions, occlusions, and varying illumination conditions. The
best performing architecture (feature-based) showed robustness in all image con-
ditions and better performance than many other techniques from literature, even
when trained with a single sample per person.

In future works, we will examine the performance of Vg-ram wnn with other
databases and use it to tackle other problems associated with face recognition
systems, such as face detection, face alignment, face recognition in video, etc.
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