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Abstract. This paper presents the implementation of ARQ-PROP II,
a limited-depth propositional reasoner, via the compilation of its speci-
fication into an exact formulation using the satyrus platform. satyrus’
compiler takes as input the definition of a problem as a set of pseudo-
Boolean constraints and produces, as output, the Energy function of a
higher-order artificial neural network. This way, satisfiability of a for-
mula can be associated to global optima. In the case of ARQ-PROP II,
global optima is associated to Resolution-based refutation, in such a way
that allows for simplified abduction and prediction to be unified with de-
duction. Besides experimental results on deduction with ARQ-PROP II,
this work also corrects the mapping of satisfiability into Energy minima
originally proposed by Gadi Pinkas.
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1 Introduction

Plenty of research has been carried out on how neural networks learn and create
implicit knowledge from perceptual experience. On a smaller scale, come the
efforts on rule extraction from such knowledge. In the next scale degree, fewer
works on how neural networks perform logical reasoning are noticed. However,
with very few exceptions [1], not much has been done towards integrating these
three approaches. This paper presents the implementation of ARQ-PROP II
[8], a neural-based propositional reasoner possessing a writable area so that
knowledge coming from outside, e.g., perceptual areas, could be integrated in
the reasoning process.
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In order to handle ARQ-PROP II’s complex architecture, its implementation
was realized through the use of the satyrus’ platform [11]. In previous works,
it was shown how optimization problems, such as TSP (Traveling Salesperson
Problem) and graph colouring, could be specified as sets of pseudo-Boolean
constraints and easily combined through the concatenation of their respective
specifications, plus the addition of other pseudo-Boolean constraints specifying
the combination’s intentionality [10]. ARQ-PROP II’s architecture, declared as
pseudo-Boolean constraints, is taken as input to the satyrus’ compiler which
produces, as output, an Energy function that can be directly mapped into a
higher-order artificial neural network.

satyrus’ compilation process, described in the next section, is based on the
mapping of satisfiability of a formula into global optima of an Energy function,
which was originally proposed by Gadi Pinkas [9]. However, such mapping was
proven to produce spurious global minima in more complex problems, such as in
the case of ARQ-PROP II, and this is corrected in Section 2.2. ARQ-PROP II,
presented in Section 3, works by associating global optima to Resolution-based
refutation, so that different logical reasoning styles such as abduction, deduction
and prediction can be performed in a uniform way. Experimental results from
ARQ-PROP II performing deduction are described and discussed in Section 4,
followed by our conclusions, presented in the last section.

2 satyrus: a satisfiability-based architecture for
constraint processing

satyrus platform is basically composed by two modules: a compiler and a solver
[10] [11]. A problem specification is fed to the compiler as a set of pseudo-Boolean
constraints, representing both the problem’s search space and the cost function,
and a penalty scale modulating the whole set of constraints. The object code
produced by the compiler consists of an Energy function, which can also be
seen as a single exact formulation to the problem in question. Global minima of
this Energy function, corresponding to the desired set of solutions, are obtained
through the use of a solver. The current satyrus’ solver is based on symmetric
higher-order neural networks.

2.1 satyrus’ language and compiler

Input to satyrus’ compiler consists of a problem specification written in the
satyrus’ declarative language. The general structure of a problem specification
is divided in four main parts: (i) neural structures, (ii) integrity constraints, (iii)
optimality constraints and (iv) a penalty scale associated to the different groups
of constraints defined within (ii) and (iii).

Constructs are provided to express the specification of different data struc-
tures of binary elements. These structures are, basically, multi-dimensional ar-
rays. The elements of these arrays play the role of propositional variables in
the constructs that specify constraints and will be identified as binary neurons
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in the neural solver. The replication of such constraints is facilitated by other
constructs. The objective function sentences are defined in a similar way and
may be read from a file. Also provided are constructs for the association of an
identifier to a group of both integrity and optimality constraints, in order to
enable the attribution of a same penalty level to them.

2.2 Energy function generation

The compiler translates the file containing the problem specification into an
intermediate representation composed by one header and a record for each term
of the Energy function. Each record has the following information: penalty level,
weight, connection arity and list of neighboring neurons. The header provides a
table with penalty identifiers and respective values. Only the penalty identifiers
and their levels are informed by the user, their values and neurons attributes
result from the compilation process.

The association of satisfiability (SAT) to global minima of a function
requires the consideration of the basic mapping of truth values of propositional
formulae to the domain {0, 1}:

H(true) = 1
H(false) = 0

H(¬p) = 1−H(p)
H(p ∧ q) = H(p)×H(q)
H(p ∨ q) = H(p) + H(q)−H(p ∧ q)

If a logical formula is converted to an equivalent in Conjunctive Normal Form
(CNF), the result being a conjunction ϕ of disjunctions ϕi, it is possible to asso-
ciate energy to H(¬ϕ). Nevertheless, energy calculated in this way would only
have two possible values: one, meaning solution not found (if the network has not
reached global minimum), and zero when a model has been found. Intuitively,
it would be better to have more “clues”, or degrees of “non-satisfiabililty”, on
whether the network is close to a solution or not. This measure also prevents
the Energy equation from having an exponential number of terms which could
result from the conversion of the outermost disjunction in the negated formula.

Let ϕ = ∧iϕi where ϕi = ∨j lij , and lij is a literal (either pij or ¬pij).
Therefore ¬ϕ = ∨i¬ϕi where ¬ϕi = ∧j¬lij . Instead of making E = H(¬ϕ),
consider E = H∗(¬ϕ) =

∑
i H(¬ϕi). So, E =

∑
i H(∧j¬lij) =

∑
i

∏
j H(¬lij),

where H(p) will be referred to as p. Informally, E counts the number of clauses
that are not satisfied by the interpretation represented by the network’s state.

A simple example demonstrates how SAT can be mapped to EM. Let ϕ be
the formula, expressed as a conjunction of clauses:

ϕ = (p ∨ ¬q) ∧ (p ∨ ¬r) ∧ (r)
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SAT (ϕ) can be translated to the minimum of the following energy function:

E = H(¬(p ∨ ¬q)) + H(¬(p ∨ ¬r)) + H(¬r)
= H(¬p ∧ q) + H(¬p ∧ r) + H(¬r)
= (1− p) ∗ q + (1− p) ∗ r + (1− r)
= q − pq − pr + 1

where H(p) = p.
Another source of potentially exponential space cost occurs when a clause ci

is required by the modeling to have a number of literals equal to the size n of the
problem. The simplification displayed by function H∗(¬ϕ) could not be applied
in this case. In some situations, however, only one of the disjuncts should be
allowed to be true at a time, constituting an exclusive-OR. The definition of a
set of so-called Winner-Takes-All (WTA) constraints helps to prevent violation
of the exclusiveness. This prevention can only be achieved by the attribution
to the WTA-constraints of a penalty level higher than ci. Penalty values should
be calculated in such a way that no violation of a constraint of level i could
be traded for the satisfaction of constraints of lower levels. This can be done
automatically, provided that the user informs an upper bound for the optimality
constraints, if there are any. It is also worth mentioning that Pinkas’ mapping
did not consider tackling optimization problems, only logical reasoning ones.

Up to this point, the mapping proposed by Gadi Pinkas has been described.
Nevertheless, an important mapping rule has been left unspecified by him, lead-
ing to potential spurious global minima. This work proposes the addition of a
rule that states that clause ci should be broken into n singleton clauses sij ,
1 ≤ j ≤ n. The set {sij} should be associated to a new penalty level, imme-
diately lower than that of the original ci, but still higher than the other lower
penalty levels.

2.3 satyrus’ neural solver

Once the Energy function is defined, one could apply a number of different solvers
in order to find its global minima. In the present work, it is assumed a general-
ization of Hopfield neural networks [5], where a stochastic behaviour [6] is intro-
duced into its binary neurons, i.e., output ON = 1 or OFF = 0. It is worth notic-
ing that the symmetric neural network associated to the mapping introduced in
the previous subsection may have higher-order connections. This means that
the resulting Energy function may have terms with more than two propositional
variables, what would imply on having synaptic weights involving more than two
neurons each, e.g., neurons i, j and k such that wijk = wjik = wkij . This does
not constitute a hindrance as has been demonstrated that, with higher-order
connections, Boltzmann Machines still converge to energy minima [4]. Parallel
and distributed simulation of networks [2] with higher-order connections can be
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done by substituting each higher-order connection by a completely-connected
subgraph. Alternatively, [9] converts the higher-order network to a binarily con-
nected one that preserves the order of energy values of the different network
states.

3 ARQ-PROP II: a goal-driven propositional reasoner

It is possible to use the mechanism described in Section 2 to design a neural en-
gine that is capable of performing propositional Resolution-based reasoning with
both complete and incomplete knowledge. The modeling has to define the sets
of propositional variables to be associated to binary neurons and a set of con-
straints that provides the reasoner with the ability to perform sound Resolution
steps. Additionally, in order to reason with incomplete knowledge and to have
the flexibility that the knowledge base does not be pre-encoded as constraints,
the engine has to be able to create new sentences (clauses).

3.1 ARQ-PROP II architecture

The data structures of ARQ-PROP II are displayed in Figure 1. The meaning
of the states of the elements of the ARQ-PROP II in Figure 1 will be explained
in Section 4. The interpretation of ARQ-PROP II structures is the following:

– IN (n× 1): indicates if the line is part of the selected proof or not; i = line
number in the proof area;

– PROOF (n × n × {+,−}): proof area; i = line number; j = nameprop; k =
literal sign;

– CB-RES-INV (n× 3): reason for belonging to the selected proof for a line in
the proof area; it can either be an instance of a clause of the Clause Base
(CB), the result of a resolution step (RES), or an invention in the case of
reasoning with incomplete knowledge (INV); i = line number; j = reason;

– EMPTY (n× 1): indicates whether the line is the empty clause or not; i = line
number;

– CBMAP (n×n): maps proof lines to the internal names of clauses of the Clause
Base that they derive from; i = line number; j = clause;

– PARENT (n×n×{1, 2}): indicates the parents (parent1 or parent2) of a line,
resulting from a resolution step, in the proof; i = parent line number; j =
line number; k = parent1 or parent2;

– CANCELED (n×n): indicates which proposition has been canceled in the proof
lines that result from resolution steps; i = line number; j = nameprop;

– CLCOMP (n×n×{+,−}): indicates clause composition for each clause (internal
name) of the selected Clause Base; i = clause number; j = nameprop, k =
literal sign;

– ORIG (n × 1): indicates that the clause belongs to the original knowledge
base; i = clause number.
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Fig. 1. General structures of ARQ-PROP II having a proof depth limit of 6. Final
states of neurons after deduction of � from {p ∨ ¬q, p ∨ ¬r, q} ∪ {¬p}. The IN-PROOF

lines compose a refutation for ¬p, thus proving p: line 1: � (empty clause), line 3: q,
line 4: ¬q, line 5: ¬q ∨ p, line 6: ¬p (query).

It is worth pointing out that structures PROOF, CLCOMP and PARENT are tri-
dimensional with n×n×2 elements, each. In the first two structures, the third di-
mension indicates the sign of the propositional literal, while in structure PARENT,
the third dimension is used to enforce the participation of two different clause
instances on a Resolution step. Clauses composition must be indicated explic-
itly by fixing the values of the nodes of structure CLCOMP. The structure INV is
used to indicate that a proof could be generated provided that sentence(s) were
incorporated to the knowledge base.

3.2 Set of constraints of ARQ-PROP II

In general, the set of integrity and optimality constraints of ARQ-PROP II must
account for the specification of a Resolution step (Resolution step constraints,
Parent line constraints and Resolvent composition constraints) and specify the
conditions for a line in the PROOF area to actually belong to the result of the
computation (In-proof constraints). In order to accomplish that, it is necessary
to add constraints for the enforcement of clause syntax (Clause instance con-
straints, Clause syntax constraints, Empty clause constraints, Clause-invention
constraints). The whole set of constraints, the detailing of which has been revised
in [14], can be informally stated as:
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1. Every line of PROOF resulting from an inference step, i.e., one that is not a
copy of a clause from CLCOMP, must have exactly two different parents, which
are also lines of PROOF;

2. Every line that is a copy of a clause from the Clause Base, CLCOMP has no
parents;

3. Except from the empty clause, every line of the proof must be a parent of
exactly one line in the proof;

4. Every Resolution inference step must have one and only one pair of canceled
literals;

5. Apart from the canceled pair of literals, all and only literals of both parents
involved in an inference step must be copied to the resulting proof line;

6. Every line that belongs to a proof is either a copy of a clause from the Clause
Base or constitutes the result of a Resolution inference step;

Additionally, some WTA conditions have been used to justify the conversion
of disjunctions in the middle of constraints to a conjunction of the disjuncts, as
explained in Section 2.2, or as a necessary part of the specification of ARQ-PROP
II:

7. WTA-1-sign: only one occurrence of propositional symbol (i.e., of its internal
name) per line in the proof (applied to PROOF);

8. WTA-2-line: only one reason per proof line (applied to CB-RES-INV);
9. WTA-3-line: only one clause from the Clause Base (CLCOMP) copied per line

of PROOF area (applied to CBMAP);
10. WTA-4-(column, parent1/2): a line can have only one parent1 and only one

parent2 (applied to PARENT);
11. WTA-5-line: a line in the proof may take part in a resolution step (i.e., be

one of the parents of another line) only once (applied to PARENT);
12. WTA-6-parent1/2: two different proof lines must be involved in a resolution

step (applied to PARENT);
13. WTA-7-line: only one pair of literals (i.e., propositional symbol) canceled

per line number resulting from a resolution step (applied to CANCELED);
14. WTA-8-sign: only one occurrence of propositional symbol (i.e., of its internal

name) per clause (applied to CLCOMP).

The specification of a pure-deduction reasoner would be complete if con-
straints 1 to 14 were satisfied. For a simple version of reasoning with incomplete
knowledge to take place, the invention of a clause must be penalized, as it is
usually more desirable to have a complete deduction of the empty clause. The
penalty has to be such that energy of a sentence that belongs to a proof will be
smaller if it is possible to choose it from the knowledge base or to generate it
from a Resolution step. This is achieved by attributing the lowest penalty level
to these constraints, making them optimality constraints.

4 Compiling and running ARQ-PROP II with satyrus

This section presents two experiments exercising ARQ-PROP II on performing
deduction over two small clause bases, both having ¬p as query:
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∆1 = {p ∨ ¬q, p ∨ ¬r, q}
∆2 = {p ∨ ¬q ∨ ¬r, q, r}

As previously shown in Figure 1, the compilation of ARQ-PROP II, assuming
a depth limit of 6 in the proof area, resulted in a network having 318 neurons
(note that fields PROOF and CLCOMP have two layers – “+” and “−”, as well as field
PARENT – parent1 and parent2). The clause base ∆1 ∪ {¬p} was written in the
clause base (CLCOMP) area. The graphical conventions adopted for the neurons’
output are: black means the neuron is clamped ON; within lines having black
neurons, white nodes are clamped OFF; grey neurons are ON as a result; within
lines having grey neurons, white nodes are OFF as a result; positions having no
output doesn’t matter for the current result. Notice that, as illustrated in Figure
1, there are ON neurons in the proof area (PROOF) representing no input clauses.
Such neurons, specially the ones in line 2, should not be considered since their
corresponding neurons in field IN were set to OFF. Those neurons producing ON
values do not have any influence on the final calculus of the Energy function.

Both experiments were conducted using the same initial temperature Ti =
10000, final temperature Tf = 1, and a geometrical cooling factor of 0.99. Figure
2 illustrates the behaviour of Energy function in the experiment with ARQ-
PROP II performing deduction of � from ∆1 ∪{¬p}. In the second experiment,
the compilation of ARQ-PROP II assumed a depth limit of 8 in the proof area,
resulting in a network having 552 neurons. The clause base ∆2∪{¬p} was written
in the clause base (CLCOMP) area and Figure 3 illustrates the behaviour of Energy
in this case.
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Fig. 2. Trajectory of the Energy for deduction of � from ∆1∪{¬p}; final Energy: 169.
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Fig. 3. Trajectory of the Energy for deduction of � from ∆2∪{¬p}; final Energy: 433.

5 Conclusion

Apart from the recent resurgence of interest in satisfiability as a means of
overcoming the inherent difficulty of many NP-hard problems [3], interest on
Pinkas’ original mapping, such as in Markov Logic Networks (MLNs) [13], are
relatively recent. The main contribution of MLNs lies on the amalgamation of
learning by examples with inferencing. On the other hand, the conception of
ARQ-PROP II as a generic propositional reasoner is unique when compared to
any other purely connectionist approach, since there is no predefined knowledge
base involved. Moreover, ARQ-PROP II is able to reason with incomplete knowl-
edge and to create new clauses; both interesting features to be explored in the
design of intelligent machines. Besides abduction and prediction, other kinds of
reasoning styles, still in the propositional domain, such as planning, are among
the next experimentation steps of this research.

Another ongoing work is the full implementation of ARQ-FOL II [7], the
First Order Logic (FOL) generalization of ARQ-PROP II. As in ARQ-PROP II,
the ARQ-FOL II architecture allows one to set a predefined limit for the proof
depth, while working without a predefined knowledge base. Such would be the
first neural reasoner performing this logic level. It must be noticed that, although
the resulting complexity of both kind of neural architectures are polynomial,
time complexity remains exponential. This is reasonable since the reasoners in
question do not treat just Horn clauses.

The use of the strategy described in this work for the complete implementa-
tion of ARQ-FOL II and other complex problems, such as the energy generation
expansion [15] and the molecular geometry reconstruction [12], can only be car-
ried out via an automated process. This is due to the number of terms of the
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Energy function generated by the satyrus compiler, as would be the case of
other logical/opmization methods. Adjustment of the search mechanisms of the
satyrus neural solver and exploration of other meta-heuristics constitute ongo-
ing work as well.
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